Pordenone, 19 February 2020

ParaFishControl

Advancements and upcoming results Marialetizia Fioravanti O.B. Dr. Ariadna Sitjà-Bobadilla Project Coordinator

is project has received funding from the European Union's Horizon 2020 research and lovation programme under grant agreement No 634429. This output reflects the views only of e author(s), and the European Union cannot be held responsible for any use which may be ade of the information contained therein.

Advanced Tools and Research Strategies for Parasite Control in European farmed fish

- **5 years collaborative project:**
- Total cost: 8 104 133.75 €
- EU contribution: 7 800 000 €
- Parasites are constraining aquaculture industry
- Different parasites, culture conditions
- Different background knowledge

Global Objective

- To increase sustainability and competitiveness of European aquaculture
- Improving understanding of fish-parasite interactions
- Developing innovative solutions and tools for the prevention, control and mitigation of the major parasites

WHY THIS PROJECT, WHY PARASITES?

Economic Impact of Parasites in Finfish Aquaculture

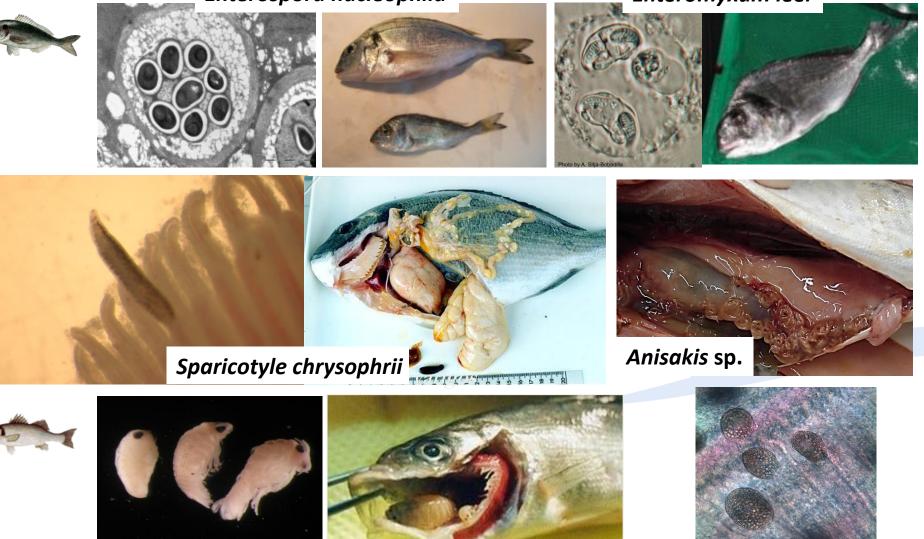
- Direct mortality
- Morbidity: Decreased FCR & growth, parasitic castration
- Increased susceptibility to other diseases (opportunistic)
- Reduced ability to cope with changes and handling
- Harvest downgrades, loss of market, reduced durability
- Costs of treatments, prevention strategies, mort disposal, etc.
- World (Shinn et al., Global Aquaculture Advocate, 2015):
 - Estimated losses due to parasitism: hatchery (20 %), grow out (1-10% harvest)
 - Parasites' annual cost : from \$1.05 billion to \$9.58 billion
- EU (+ Norway) (H. Rodgers, FishVetGroup):
 - The value of salmon aquaculture in 2016: €12.5 billion

• Parasite impact: €525 to 725 million pa (direct & indirect)

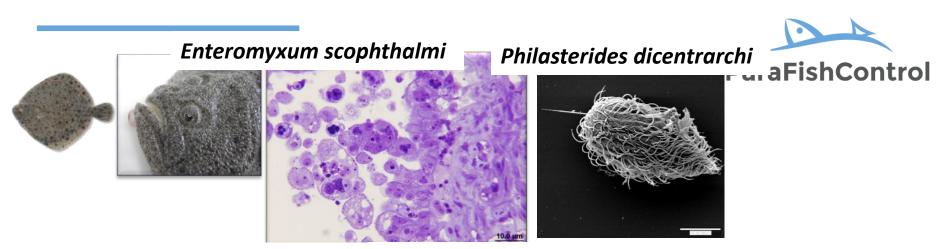
WP leaders

WP1	Geert Wiegertjes	<u>Geert.Wiegertjes@wur.nl</u>	WU
WP2	Ivona Mladineo	<u>mladineo@izor.hr</u>	IOR
WP3	James Bron	j.e.bron@stir.ac.uk	UoS
WP4	Oswaldo Palenzuela	oswaldo.palenzuela@csic.es	CSIC
WP5	Niels Lorenzen	<u>nilo@vet. dtu.dk</u>	DTU
WP6	Alastair Cook	<u>alastair.cook@cefas.co.uk</u>	Cefas
WP7	Miguel Angel Pardo	<u>mpardo@azti.es</u>	AZTI
WP8	Marieke Reuver Emma Bello (o.b.)	<u>marieke.reuver@aquatt.ie</u>	AquaTT
WP9	Ariadna Sitjà-Bobadilla	<u>coordination.parafishcontrol@csic.es</u>	CSIC

Parasite group	Parasite species	Fish
Crustosoone	Lepeophtheirus salmonis	AS
Crustaceans	Ceratothoa oestroides	ESB,GSB
Monogeneans	Sparicotyle chrysophrii	GSB
	Tetracapsuloides bryosalmonae	RBT
	Enteromyxum leei	GSB
Myxozoans	Enteromyxum scophthalmi	ТВ
	Sphaerospora molnari	CC
	Thelohanellus kitauei*	CC
Microsporidians	Enterospora nucleophila*	GSB
Cilliotoe	Ichthyophthirius multifiliis	RBT, CC
Cilliates	Philasterides dicentrarchi	ТВ
Dinoflagellates	Amyloodinium ocellatum	ESB
Amoebae	Paramoeba perurans	AS
Oomycetes	Saprolegnia parasitica	AS, RBT
Zoonotic helminths	Anisakidae, Opisthorchidae, Diphyllobothriidae	All


Abbreviations: AS = Atlantic salmon (Salmo salar); CC = common carp (Cyprinus carpio), ESB = European sea bass (Dicentrarchus labrax), GSB = gilthead sea bream (Sparus aurata). RBT= rainbow trout (Onchorhynchus mykiss), TB = turbot (Psetta maxima). * Emerging or exotic parasites.

Enterospora nucleophila


Enteromyxum leei

www.parafisncontrol.

Ceratothoa oestroides

Amyloodinium ocellatum

Lepeophtheirus salmonis Paramoeba perurans

Saprolegnia parasitica

 Tetracapsuloides bryosalmonae
 Ichthyophthirius multifilis

 Image: Construction of the second secon

We are a mature project: ends 31 March 2020

47 KOs collected in P3

- KO #1 Risk Factors for parasite infections (Owner: Cefas, ANDROMEDA, AQUARK, CSIC, IOR, SKRET, USC, UNIBO, UNIUD)
- KO #2 Infection model for Saprolegnia (both diclina and parasitica) (WU)
- KO #3 White spot disease control with bacterial surfactant (Owner: KNAW, KU Patent number EP17202669)
- KO #4 Sparicotylosis alternative treatments (Owner: IOR)
- KO #5 Anisakis detection portable kit (Owner: AZTI)
- KO #6 Best Practices of farm management to avoid presence of Anisakis in farmed fish (Owner: AZTI et al.)
- KO #7 Alternative treatment strategies for Saprolegnia (Owner: UNIBO)
- KO #8 Ich recombinant protein and homogenate vaccines (Owner: KU, MTA)
- KO #9 Expression of two proteins of Ich in Pichia (Owner: KU, W42)
- KO #10 PKD Vaccine (Owner: UNAB)
- · KO #11 In vivo infection model for AGD in salmon (Owner: Cefas)
- KO #12 In vitro infection model for AGD in salmon (Owner: UoS)
- KO #13 Compound that works against Paramoeba perurans (AGD) (Owner: UoS)
- KO #14 Salivary gland proteins from Lepeohtheirus salmonis (Owner: UiB and UoS)
- KO #15 Vaccines against Sphaerospora molnari in carp (Owner: BCAS)
- · KO #16 Immunostimulants against Sphaerospora molnari in carp (Owner: BCAS, SKRET)
- KO #17 qPCR for Sphaerospora molnari and T. kitauei (Owner: BCAS)
- KO #18 Immunostimulants against Amyloodinium ocellatum (Owner: UNIUD)
- KO #19 Alternative treatments for Ceratothoa oestroides (Owner: IOR)
- KO #20 Point of care for E. leei sea bream (Owner: CSIC, INGENASA)
- KO #21 Infection models for E. leei (Owner: CSIC)
- KO #22 Immunostimulants for Ich (Owner: KU)
- KO #23 Alternative treatment strategies for Ich (Owner: MTA)
- KO #24 Alternative treatment strategies for Ich (Owner: KU)
- KO #25 Vaccines for Saprolegnia (Owner: UNAB)
- KO #26 New monoclonal antibodies for PKD (Owner: VAL)
- KO #27 Point of care tests for Enteromyxum spp. (Owner: CSIC, INGENASA)
- KO #28 Alternative treatments for Philasterides dicentrarchi (Owner: USC)
- KO #29 Vaccines for Philasterides dicentrarchi (Owner: USC, CSIC, INIA)
- KO #30 Point of care test for P. perurans (Owner: Cefas)
- KO #31 Repository of diagnostic methods (Owner: CSIC, DTU, UNIBO, IOR, UoS, UNAB, Cefas, BCAS, MTA, USC, KU)

- KO #32 SHIELD new diet for sea bream (Owner: SKRET)
- KO #33 Strategy to block the interaction of BAFF with its receptor as a treatment against proliferative kidney disease (PKD) (Owner: INIA-UNAB - Patent in progress)
- KO #34 Challenge model for Amyloodinium ocellatum (Owner: UNIUD)
- KO #35 Sequencing of Amyloodinium ocellatum (genome) (Owner: UNIUD)
- KO #36 Vaccine for Amyloodinium ocellatum (Owner: UNIUD)
- KO #37 Two different qPCR protocols for detection of Neoparamoeaba perurans (AGD) (Owner: DTU)
- KO #38 qPCR and ICH protocols for detection of *Tetracapsuloides bryosalmonaeis* (PKD) (Owner: DTU)
- KO #39 qPCR for Enterospora nucleophila (Owner: CSIC)
- KO #40 Methods for detection, quantification and discrimination of genotypes/serotypes of *P. dicentrarchi* (Owner: USC).
- KO #41 Tools for detection and identification of zoonotic metacercariae (Owner: UNIBO)
- KO #42 Sequencing of Enteromyxum leei (genome) (Owner: CSIC)
- KO #43 Sequencing of Enteromyxum scophthalmi (genome) (Owner: CSIC)
- KO #44 Sequencing of P. dicentrarchi (genome/ transcriptome) (Owner: USC).
- KO #45 Sequencing of Sphaerospora molnari (genome/transcriptome) (Owner: BCAS).
- KO #46 Sequencing of Paramoeba perurans (genome/transcriptome) (Owner: Cefas, UoS).
- KO #47 Sequencing of Sparicotyle chrysophrii (genome/transcriptome) (Owner: IOR, HCMR, CSIC).

www.parafishcontrol.eu

Lets have a look at some of them...

1-Generating a more positive public perception

KO#6 0% zoonotic helminths in farmed fish

European Food Safety Authority

ParaFishControl

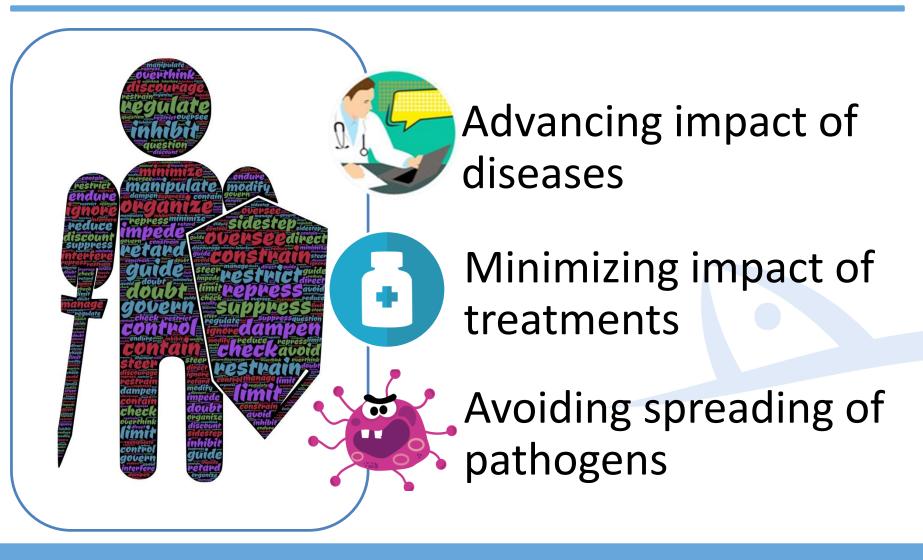
Zoonotic risks in:

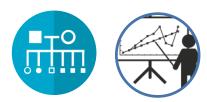
- marine and freshwater farmed fish: 0 %
- fish products: 0%
- Feedback to EATiP, FEAP and AAC done
- Feedback to ESFA to be done
- Allergenicity of zoonotic helminths: expanded to Contracaecum
- Recommendation to determine the presence and transfer of allergens from aquafeeds to fish
 - Smart solution to ensure safety of fish products
 - Good practice handbook for Minimum Parasite Infection

We have recently presented a <u>Spanish Standardization Proposal</u> to the committee CTN 173/SC2 based on WP7 results

...and launched a dialogue with European authorities for an emendment to current legilsation

Interaction wild-farmed fish




- S. chrysophrii and C. oestroides between wild and farmed GSB and ESB
- 2. Characterisation of possible transfer of *S. parasitica* from farmed to wild salmonids and viceversa.
- 3. Epidemiological model to determine the transfer of *I. multifiliis* between farmed and wild salmonids.

The transfer depends on parasite species and microlocation (we still do not precisely which parameters, e.g. currents, bottom type, salinity...). Thus, there is a strong evidence that it does exist, but at different "success rate". It is most prominent in *Ceratothoa* (aggressive natatory infective stages), at a lower degree for *Sparicotyle*, while *Saprolegnia* and *Ich* were evaluated using different approach, but even so.

2 - Develop appropriate governance models

Information essential for diagnostics, treatments, vaccines, biosecurity, breeding, welfare indicators, etc.

Knowing the parasite: *In vitro* culture, life cycle, experimental transmission, genome, transcriptome, proteome

Knowing the host:

Immune response, histopathology, transcriptomics (RNA seq, qPCR-array)

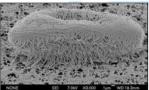
Some basic KOs

KO #35 - Sequencing of Amyloodinium ocellatum (genome)
KO #42 - Sequencing of Enteromyxum leei (genome)
KO #43 - Sequencing of Enteromyxum scophthalmi (genome)
KO #44 - Sequencing of P. dicentrarchi (genome/ transcriptome)
KO #45 - Sequencing of Sphaerospora molnari (genome/transcriptome)
KO #46 - Sequencing of Paramoeba perurans (genome/transcriptome)
KO #47 - Sequencing of Sparicotyle chrysophrii (genome/transcriptome)

KO#12 Neoparamoeba perurans RTgill-W1 In vitro challenge model

Book for standard Operating protocols for parasite transmission and isolation

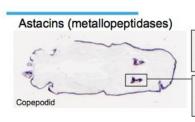
KO#49 Philasterides dicentrarchi *nkl* gene good candidate for genetic breeding

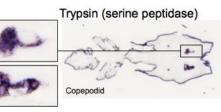

KOs Vaccines and immunoprophylaxis

KO #36 - Amyloodinium ocellatum Vaccine trials in lab

KO#10 Proliferative Kidney Disease (PKD) DNA Vaccine field trials **KO#9** Ichthyophthirius multifiliis Recombinant vaccine in Pichia pastoris

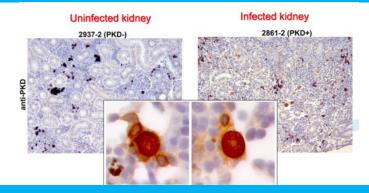
KO#29 Philasterides dicentrarchi Variable Surface Protein (VSP) expressed in Pichia pastoris as vaccine targets


Field-based


vaccination trials

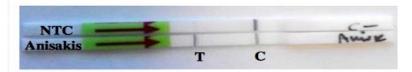
KO#14 Salmon louse Salivary gland proteins - vaccine targets

Enteromyxum leei functional feeds And others "in the oven"…



KOs diagnostic tools

KO#26 Proliferative Kidney Disease (PKD) P14G8 Mab



KO#38 PKD: qPCR & ICH protocols

KO#39 Enterospora nucleophila qPCR & ISH protocols

POC: Enteromyxum spp.

KO#5 Anisakis Portable detection kit

LF RPA Assay for the detection of Anisakis simplex: Test line (T); Internal Control line (C). Negative Template control (NTC)

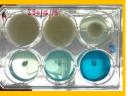
KO #40 P. dicentrarchi Methods for detection, quantification and discrimination of genotypes/serotypes

KO#41 Zoonotic metacercaria Tools for detection and identification

Reference diagnostic methods for: *P. perurans, E. nucleophila T. bryosalmonae*

Repository of parasite diagnostic methods

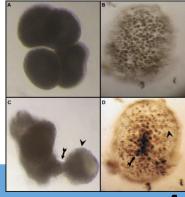
And others "in the oven"...


KOs treatments

KO#7 Saprolegnia Treatments validation

Benzoic acid (MIC:100 ppm) Acetic acid (MIC:250 ppm) Iodoacetic acid (MIC:250 ppm) copper sulphate (MIC:250 ppm) Virkon[™]S (MIC = MLC = 1,000 ppm) Actidrox[®] (MIC = 5,000 / MLC= 500) Detarox[®] AP (MIC = 1,000 ppm / MLC= 100)

KO#4 Sparicotylosis Alternative Treatments


Bithionate sodium Cedrol Curcumin Eucalyptol Garlicin (+)-trans-chrysanthemic acid Camphor

KO#28 Philasterides dicentrarchi Nk-lysin (Nkl) AMP **KO#3** Ichthyophthirius multifiliis Bacterial Bio-surfactant (*Pseudomonas*)

KO #33 PKD Strategy to block the interaction of BAFF with its receptor as a treatment (patent in progress)

Optimal strategy for the use of salmon lice cleaner fish

www.paransncontrol.eu

PATENT EDP ref: P1600045PC00 – International PCT Application No. PCT/EP2018/081923

START-UP: SUNDEW

And others "in the oven"...

KOs epidemiological models and tools

Risk Factor Analysis

KO#7 Identification of risk factors for parasite introduction into and amplification within fish farms: *Sparicotyle chrysophrii, Enteromyxum leei, Enterospora nucleophila, Ceratothoa oestroides*


Alpha version of the economic model

- Farm level tool developed in R Shiny
- Provides a user-friendly web-based interface through which partners and fish farmers can investigate some of the key findings
- Provides information on the relative likelihood of infection and intensity based on factors chosen by an end user.

Manuals describing IPMS for parasite management and handbooks describing good practices

- Manual 1 Salmonids
- Manual 2 European sea bass & gilthead sea bream
- Manual 3 Turbot
- Manual 4 Common Carp

Next event

FINAL CONFERENCE BRUSSELS **11th** March 2020 **CSIC** Headquarters Registration: bit.ly/2NO1Nr0

Communication & Press

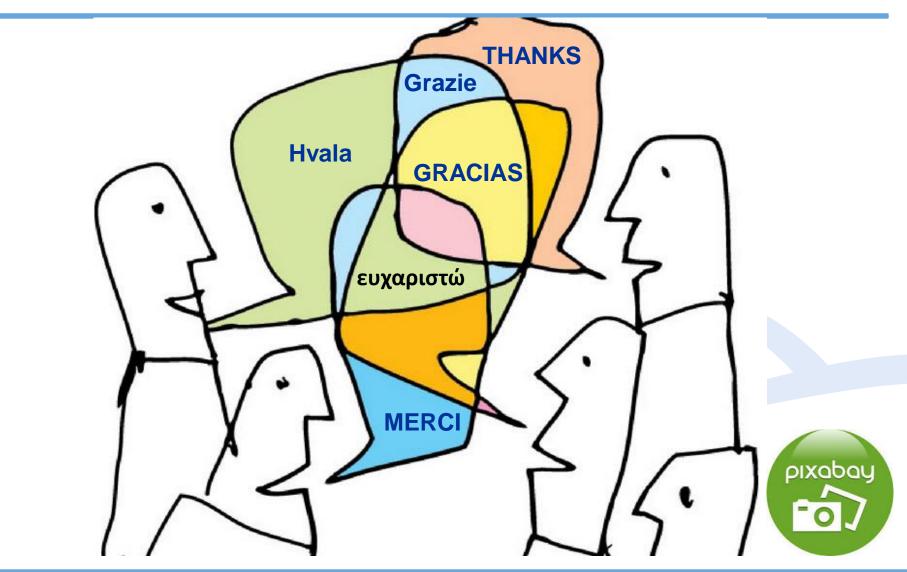
- Emma Bello
- emma@aquatt.ie

Management

- Dr. Enric Belles-Boix
- enric.belles-boix@inra.fr

Coordination

- Dr. Ariadna Sitjà-Bobadilla
- parafishcontrol.coordination@csic.es



http://www.parafishcontrol.eu

in ParaFishControl

