

Seafood product innovation by using emerging/non-thermal technologies

Innovazione dei prodotti ittici mediante utilizzo di tecnologie emergenti e non-termiche

Pietro Rocculi, PhD

Alma Mater Studiorum

University of Bologna

DISTAL

Deputy-Director CIRI Agroalimentare

Campus of Food Science Piazza Goidanich 60 47521 CESENA (Italy)

Email: Pietro.Rocculi3@unibo.it

AQUAFARM Motivation for new technologies

- New products /consumer expectation
- Quality
 - Health benefits
 - Sensory attributes
- Food safety

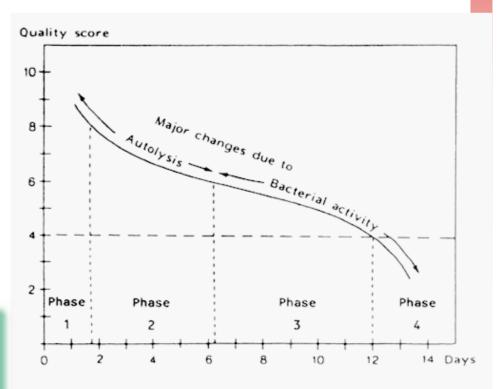
- Cost (energy)
- Time
- Efficiency

- Waste reduction/reuse, sustainability

Critical Factors in Seafood preservation

Fish products in general have a high degree of perishability due essentially to:

High content of spoilage bacteria

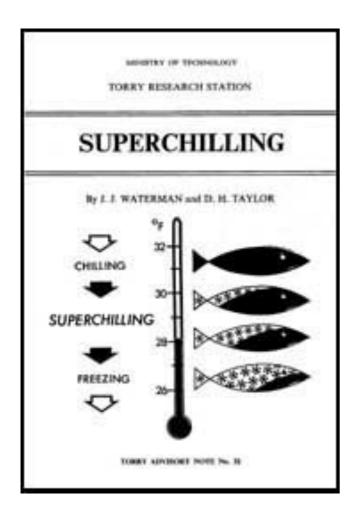

Presence of autolytic enzymes

pH ≈ low acid

High water activity (a_w)

Factors favorable to microbial development and degradative reactions

Fresh-like quality and cold chain



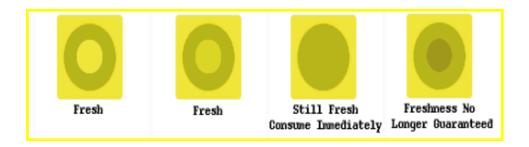
Fresh-like quality and cold chain

Superchilling

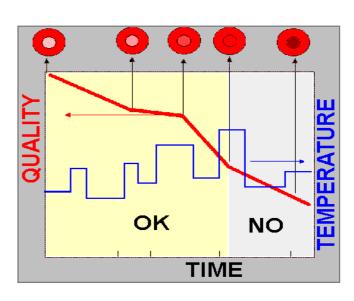
Superchilling causes the fish to be cooled down to -2.5 ° C just below the temperature at which it begins to freeze.

At this temperature it is frozen only on the surface and therefore preserves its freshness qualities and will not be perceived as a frozen product

- The fish keeps its freshness longer, up to 30 days
- Shelf Life prolongation without significant changes
- This means less CO2 emissions
- Long shelf-life also means less food waste

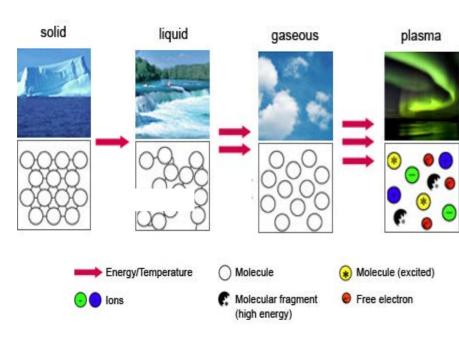


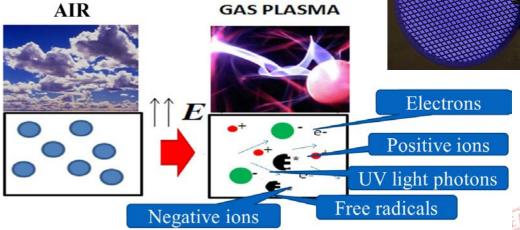
Real needs vs. reality!


Primary transport	4°C	24-48 h
Distribution platform	4°C	12 h
Secondary transport	6°C	12 h
Unloading point of sale	12°C	4 h
Storage point of sale	6,5°C	3 d
Consumer transport	20°C	2 h
Home refrigeration	7,5°C	End of shelf-life

Intelligent packaging

- <u>Time-temperature integrators</u>


Why not?


lonized gas obtained by applying energy to a gas mixture

Contains: reactive oxygen and nitrogen species,

radicals, electrons, ions, UV ...

Main effect in Food

- Microbial decontamination
- Enzymatic inactivation
- Effect on living tissue metabolism
- Oxidation of fat and bioactive compounds

Mackerel fresh fillets
Albertos et al (2017)
DBD 70-80 kV
Treatment time: up to 5
min

Dried filefish
Park et al (2015)
Treatment time up to 20
min

Results:

Spoilage bacteria was significantly reduced as DBD voltage-time increased.

Colour parameters not affected by DBD.

Lipid oxidation increased after DBD exposure.

Promising treatment for microbial inhibition in fish products

Necessary to tailor treatment parameters for each specific products

Contents lists available at ScienceDirect

Innovative Food Science and Emerging Technologies

journal homepage: www.elsevier.com/locate/ifset

Journal of Food Engineering 244 (2019) 21–31

Contents lists available at ScienceDirect

Journal of Food Engineering

journal homepage: www.elsevier.com/locate/ifoodeng

High voltage cold atmospheric plasma: Antibacterial properties and its effect on quality of Asian sea bass slices

Oladipupo Odunayo Olatunde, Soottawat Benjakul*, Kitiya Vongkamjan

POSITIVE RESULTS

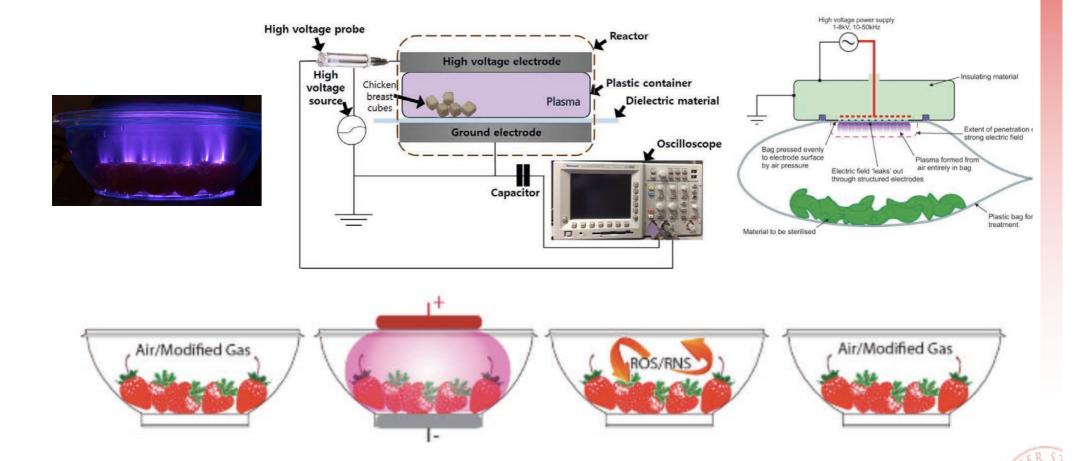
- HVCAP had a pronounced influence on the inhibition towards Vibrio parahaemolyticus, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Listeria monocytogenes
- The rate of reduction was higher for Gram-negative bacteria (Vibrio parahaemolyticus, Escherichia coli, and Pseudomonas aeruginosa) than Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes).
- Microbial population was generally decreased as treatment time increased
- Enterobacteriaceae were not detected in samples treated with HVCAP generated for 5, 7.5 and 10 min

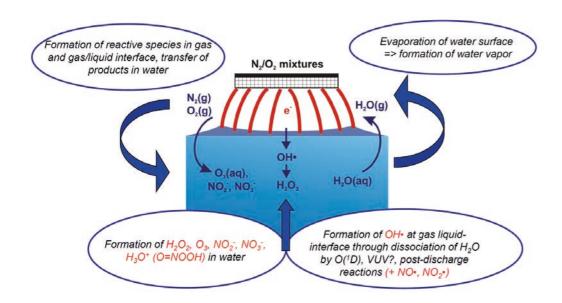
In-package cold plasma technologies

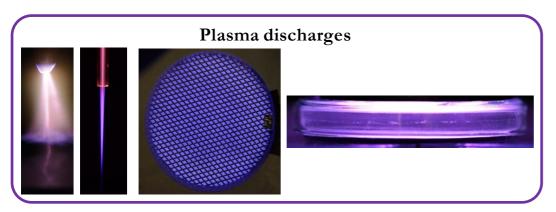
N.N. Misra^{a,*}, Ximena Yepez^b, Lei Xu^b, Kevin Keener^{a,c}

- The in-package volume DBD plasma has been shown to **reduce the population of the spoilage bacteria (total aerobic psychrotrophs**, Pseudomonas sp. and lactic acid bacteria) by ca. 1 log10 at 80 kV in fresh mackerel (Scomber scombrus) fillets (Albertos et al., 2017a,b).
- However, no effect on aerobic mesophilic counts
- an increased oxidation of the lipids poses question over the suitability of cold plasma treatments under these conditions.

NEGATIVE RESULTS


- Reactive species generated during HVCAP can induce lipid oxidation
- TBARS value rapidly in- creased as HVCAP treatment time increased with values ranging from 0.19 to 1.86 mg MDA/kg
- An increase in lightness (L*) and a decrease in redness (a*) were obtained for Asian sea bass slices treated with HVCAP as treatment time increased


In-Package Plasma Generation



Plasma Activated Water (PAW)

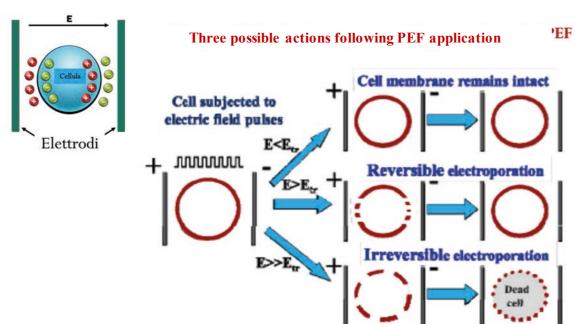
Chemical composition of PAW

Hydrogen peroxide [µM]	Nitrites [µM]	pН
242	86	2,5

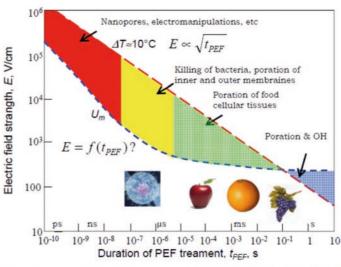
 $NO_2^- + H_2O_2 + H^+ \rightarrow O = NOOH + H_2O$

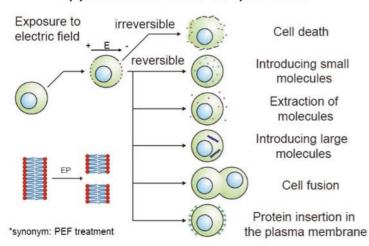
Peroxynitrous acid: strong antimicrobial agent

Antimicrobial activity on 10⁴ CFU/ml of

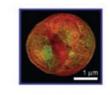

<u>Candida albicans</u> and <u>Staphylococcus aureus</u>

Contact time 5 min


Pathogen	Log R		
Candida albicans	3,5 ± 0,4		
S taphylococcus aureus	3,98 ± 0,1		



Range di applicazioni del PEF



Karl H. Schoenbach, Robert H. Stark and Stephen j. Beebe "Bioelectrics-new applications for pulsed power technology", in Pulsed Power Plasma Science. 2001. PPPS-2001. Dicest of Technical Papers. 2001.

Applications of Electroporation

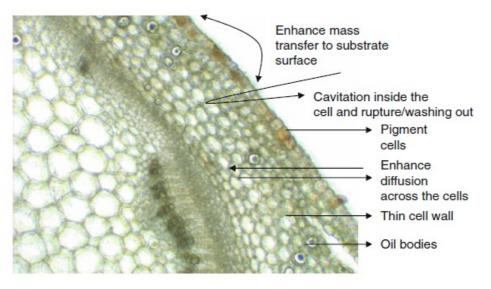
$E_c = U / 1.5 R \cos \theta$

Microbial cells
R: 1 - 10 μm
Ec: 5 - 50 kV/cm

Tissue cells

Vegetable tissue cells
R: 10 - 100 μm
Ec: 0.5 - 5 kV/cm

Pulsed Electric Fields (PEF) Mass transfer enhancement


- Various processes in food production governed by mass transfer
- Mass transfer resistances limit yield and production rates

Ultrasound:

- Acoustic streaming
- Cavitation
- Interparticle collisions
- Particle breakdown

Processes:

- Extraction
- Drying
- Brining
- · Osmotic dehydration
- Enzyme activation

Vilkhu et al. (2011)

Modular Lab Scale plant

Industrial scale

PEF equipments

Benefits PEF in Fish Processing

- Enhanced drying, brining and marinating processes
- Improved micro-diffusion of brine and marinade in the fish tissue
- Improved water binding due to the interaction between protein, salt and phosphate
- □ Inactivation of parasites in fish fillets
- Reduced labor costs

Effects on Fish Quality

- product structuremodifications
- tenderization
- safety
- improved waterbinding (particularlyinteresting for cookingoperation)

PEF assisted brining

Quality parameters of sea bass subjected to pulsed electric field (PEF) treatment and brine salting

Janna Cropotova, Jessica Genovese, Silvia Tappi, Pietro Rocculi, Luca Laghi, Marco Dalla Rosa, Turid Rustad

Winner of BEST POSTER presentation at

2nd FOOD CHEMISTRY Conference

Shaping the Future of Food Quality, Safety, Nutrition and Health 17–19 September 2019 • Seville, Spain

Raw material

Sea bass fished in the Adriatic sea in May 2019 Filleted and skinned Cut in 2x2x2 cm pieces

Salting parameters

• NaCl: 5, 10%

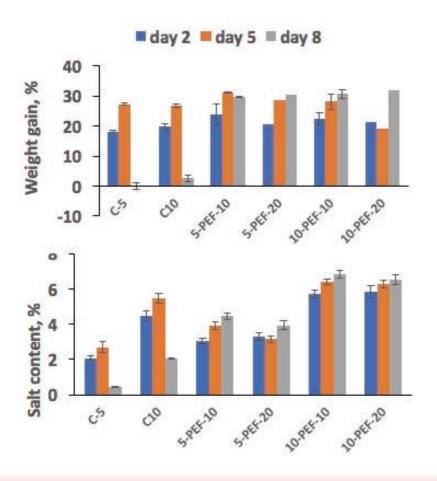
Time: 2, 5 and 8 days

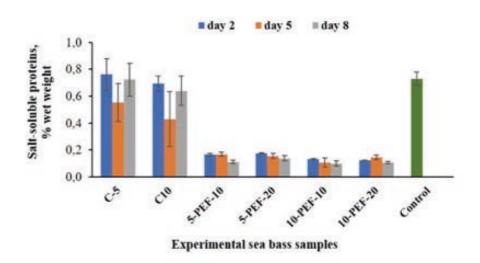
PEF parameters

Field strenght 300, 660 V/cm

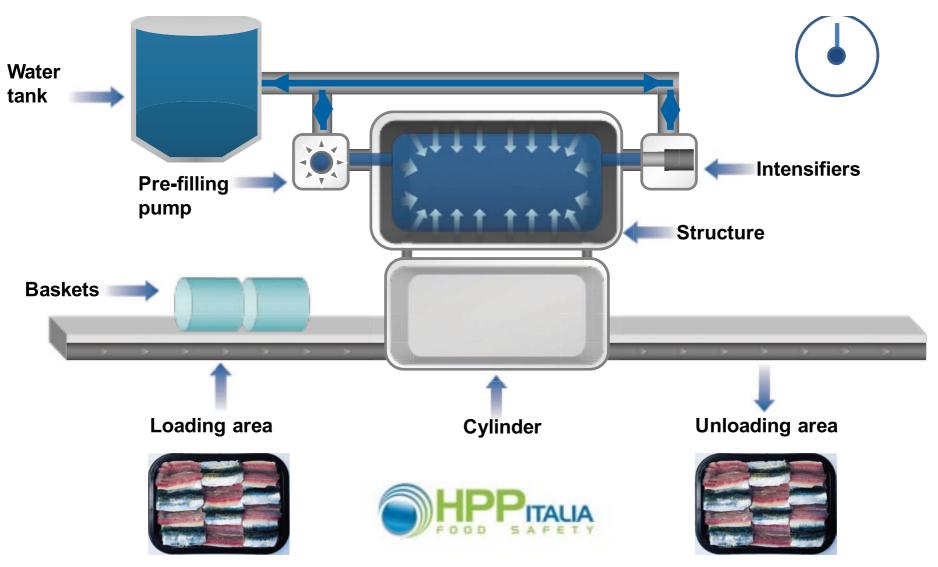
Full Factorial Design (18 samples)

Analytical Determinations:

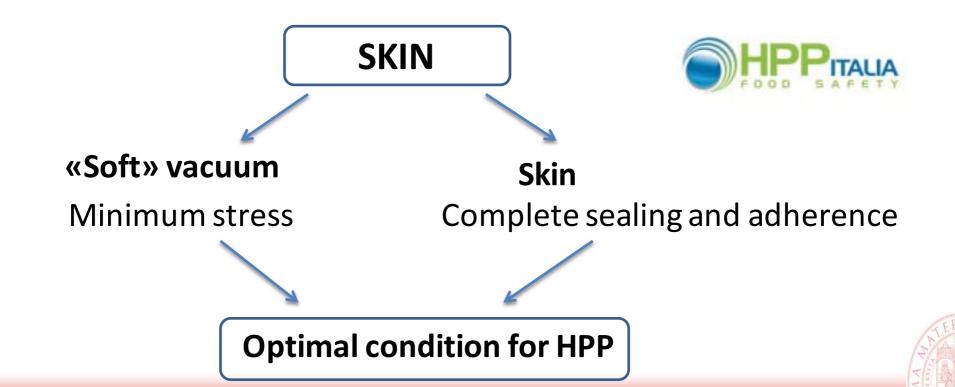

- Weight gain (%)
- Salt content (%)
- Color (L* and a*)
- Water Holding Capacity (WHC)
- Water activity (a_w)
- Lipid oxidation
- Protein Denaturation and solubility

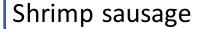


Main Results


- PEF allowed to <u>increase salt distribution</u> in the fish tissue.
- Solubility of miofibrillar protein was significantly affected

High hydrostatic pressure (HPP) **Maintenance**





- HPP work with flexible packaging (and water friendly labels) => no glass, no canned foods
- Vacuum packaging is the optimal condition

Shrimp sausage + seaweed

PRE-HPP (SL = 8 d)

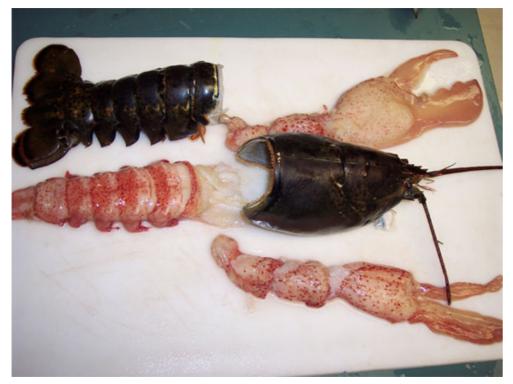
POST-HPP (SL > 30 d)

No detectable differences!

Shrimp burger

Shrimp sausage

Salmon sausage


PRE-HPP (SL = 8 d)

POST-HPP (SL > 21 d)

Detectable colour modification!

Lobster: **Complete flesh** separation

Easy to get the full lobster-meat in 3 steps...

Put lobster on plate

step 1

step 2

step 3

and ready..! For bake, grill, steamed, butter poached, sous-vide ...

High Pressure Plants & Products



Microbial load reduction

Shelling processing

- ☑Pacific oyster (*Crassostrea gigas*) optimal shucking was 300 MPa for 2 min.
- ✓Shelf-life of oysters treated by HP extended from 6–8 days to 12 days under refrigerated condition

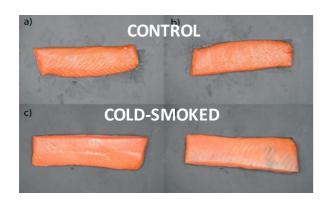
Modified atmosphere processing and packaging

Cryo-smoking – set up of procedures

Equipment, developed and in the process of patenting by CS

Smoking

- 30 °C (without ice) 1-2 h Smoking: Chippings Beech Tree
- 1°C Carrier gas: Cold Nitrogen 1-2 h Smoking: Chippings Beech Tree



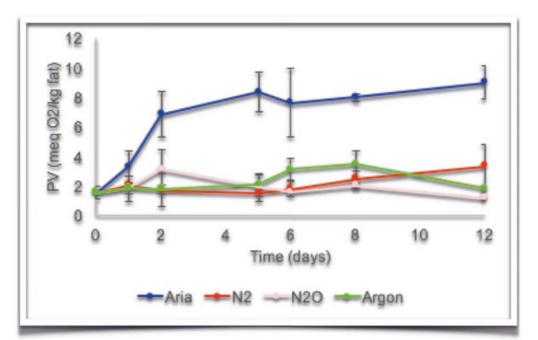
obtain smoked salmon with improved quality and nutritional characteristics compared to the traditional method

Preliminary tests



	Color			a _w	Hardness	Dry
						matter
	L*	a*	b*		(N)	(%)
	38,68 a	15,13 a	20,73 b	0,894 a	22,36 b	45,51 b
Control	(± 1,24)	(± 0,54)	(± 1,75)	(±0,006)	(± 1,93)	(± 1,18)
	41,39 b	16,73 a	15,84 a	0,950 b	12,42 a	38,19 a
Cryo-Smoked	(± 1,37)	(± 1,00)	(± 2,85)	(± 0,003)	(± 1,22)	(± 0,61)

Modified atmosphere processing and packaging


Colour was affected by MAP and resulted in higher L* and lower a* values in Air sample

Fat oxidation was

inhibited by MAP

as shown by PV

values.

Tappi et al., 2018, FoodOmics Conference, Cesena (ITA)

Optimization of technologies for seafood processing and by-products valorisation

Squilla mantis

Mechanical separation

Shells

Carapac

Antimicrobial and antioxidant properties

Flesh

Frozen and stored for 12 months

Tappi et al., 2018, FoodOmics Conference, Cesena (ITA)

Creation of added value products

Optimization of technologies for seafood processing and by-products valorisation

Biotechnological processes to obtain functional ingredients from solid fish by-products

Safe and robust selected yeast strains (i.e. Y. lipolytica strains)

Optimized and sustainable biotechnological processes

Multiple functional ingredients

Most relevant research projects

- **PRIZEFISH** *Piloting of eco-innovative fishery supply-chains to market added-value Adriatic fish products*. Project Interreg Italy-Croatia, European Regional Development Fund (2018-2021).
- **FUTUREUAQUA** Future growth in sustainable, resilient and climate friendly organic and conventional European aquaculture. Project H2020. Call: H2020-BG-2018-2020 (Blue Growth). Taype of action: IA (2018-2022).
- **NEWTECHAQUA** New Technologies, Tools and Strategies for a Sustainable, Resilient and Innovative European Aquaculture H2020-BG-2018-2020 (Blue Growth) Type of action: IA (2019-2022)
- **PLASMAFOOD** Study and optimizazion of cold atmospheric plasma treatment for food safety and quality improvement. PRIN: PROGETTI DI RICERCA DI RILEVANTE INTERESSE NAZIONALE (2018-2021).

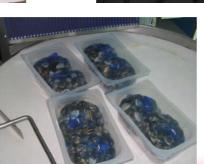
From research to commercial products!

Research

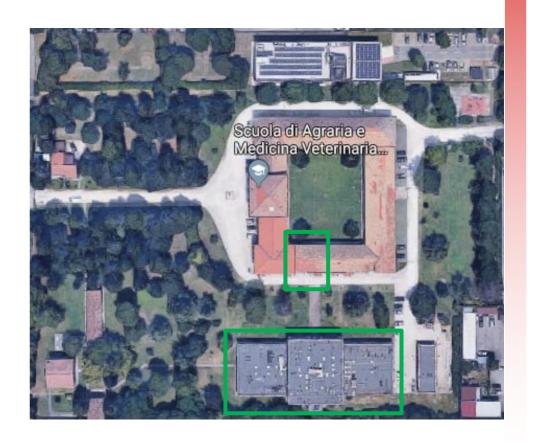
Plant producers and users

Seafood products

From research to commercial products!



II CIRI Agroalimentare


Struttura indipendente:

Via Quinto Bucci 336, Cesena (FC) → 950 m²

Spazi condivisi:

Firmati accordi di condivisione spazi con

BIGEA \rightarrow 15 m^2 FABIT \rightarrow 100 m^2 DEI \rightarrow 15 m^2 CHIM \rightarrow 63 m^2 STAT \rightarrow 12 m^2 DISTAL-CES \rightarrow 607 m^2 DISTAL-BOL \rightarrow 216 m^2 DICAM \rightarrow 82 m^2

Il CIRI Agroalimentare

Organizzazione e personale

Struttura:

Consiglio di CIRI

Direttore - Vicedirettore

Resp. gestione qualità

Giunta esecutiva

Responsabile Amministrativo

Amministrazione comune

5 Unità operative

Sicurezza e autenticità

Produzione primaria sostenibile

Qualità, nutrizione e salute

Processi e prodotti alimentari

Consumo e mercati

Personale: (2019)

Ricercatori afferenti 113

Assegnisti 14

Contratti co.co.co. 4

DISTAL, Campus of Food Science and Technology, *Alma Mater Studiorum*, Università di Bologna

E-mail: pietro.rocculi3@unibo.it

Thanks for your attention !!

