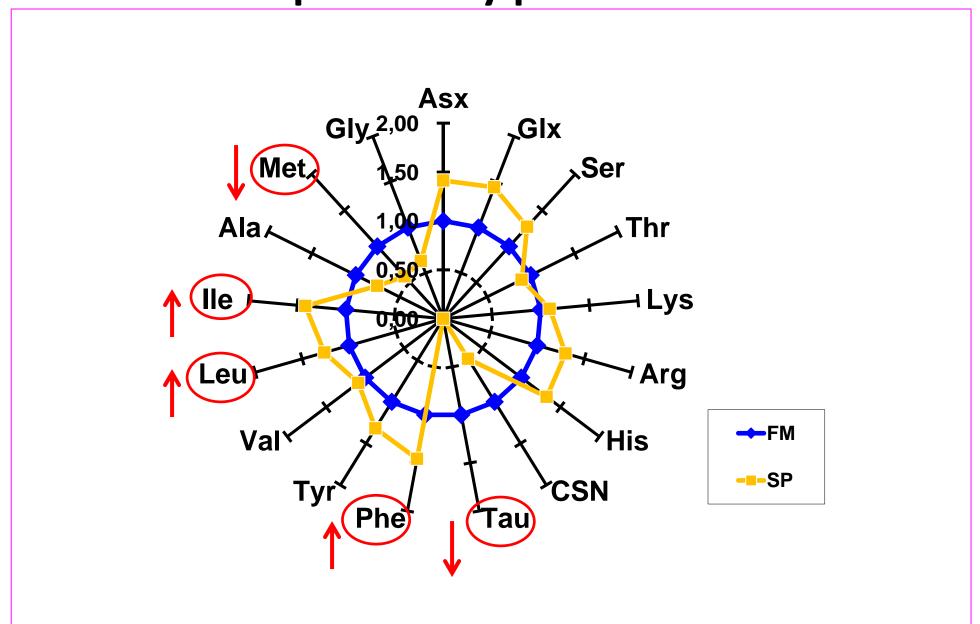
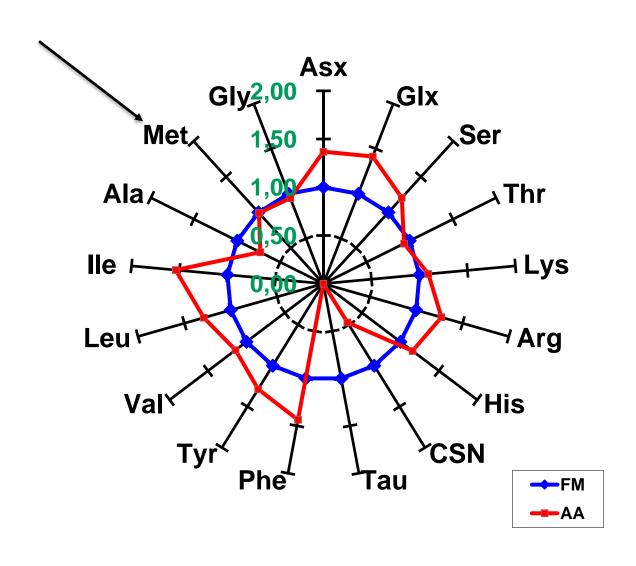

AGER 4F: Balancement of the carnivorous fish diet, for the minimization of FM inclusion

Marco Saroglia¹, Laura Gasco², Massimo Labra³, Pietro Pulina⁴, Roberto Anedda⁵, Marino Prearo⁶, Ilaria Re⁷, Fabio Brambilla⁸, Ronald Hardy⁹, Genciana Terova¹

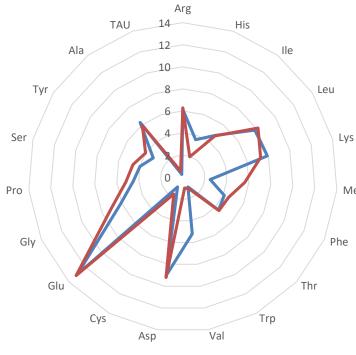
Università degli Studi dell'Insubria, DBSV¹; Università degli Studi di Torino, DISAFA²; Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d'Aosta⁶; Università degli Studi di Sassari⁴, Università degli Studi Milano Bicocca ³; Italbiotec⁴; VRM/Naturalleva⁸; Idaho State University⁹; Porto Conte Ricerche, Tramariglio (SS)⁵


Fish meal substitution

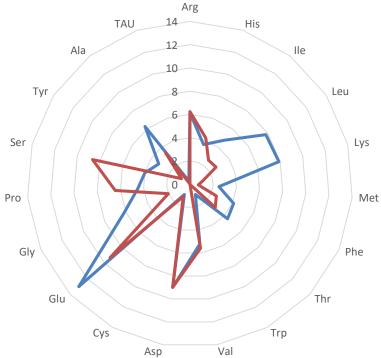


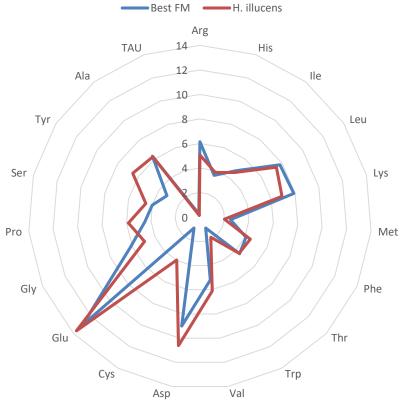
AMINOACIDS BALANCE: THE EXAMPLES OF METHIONINE AND TAURINE

Amino acid profile soy protein and fishmeal



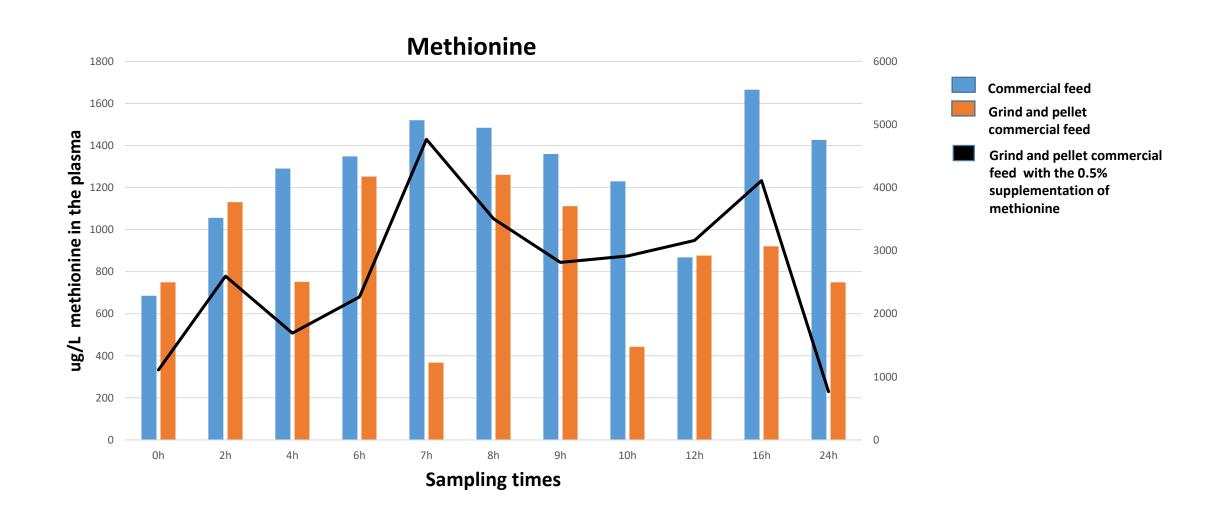
Supplement with Methionine


Comparison between aminoacids profile



Comparison between aminoacids profile

Best FM Feather meal



Comparison between aminoacids profile

Trial with 3 kind of feeds:

commercial feed, grind and pellet commercial feed, grind and pellet commercial feed with the 0.5% supplementation of methionine.

Methionine: a source of sulphur required for the synthesis of cysteine and taurine as well as an essential methyl-donor in cellular metabolism. A total of 48% of dietary Met metabolism takes place in the liver.

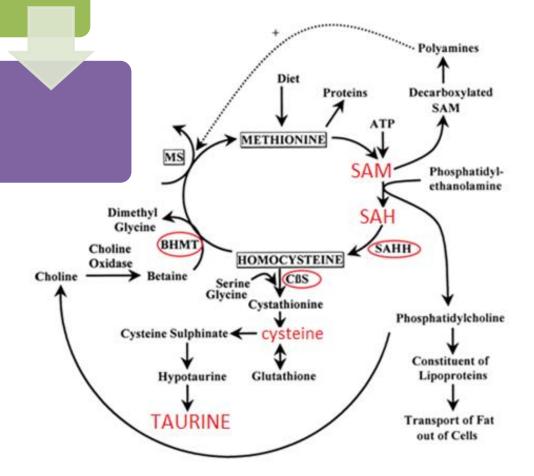
Background

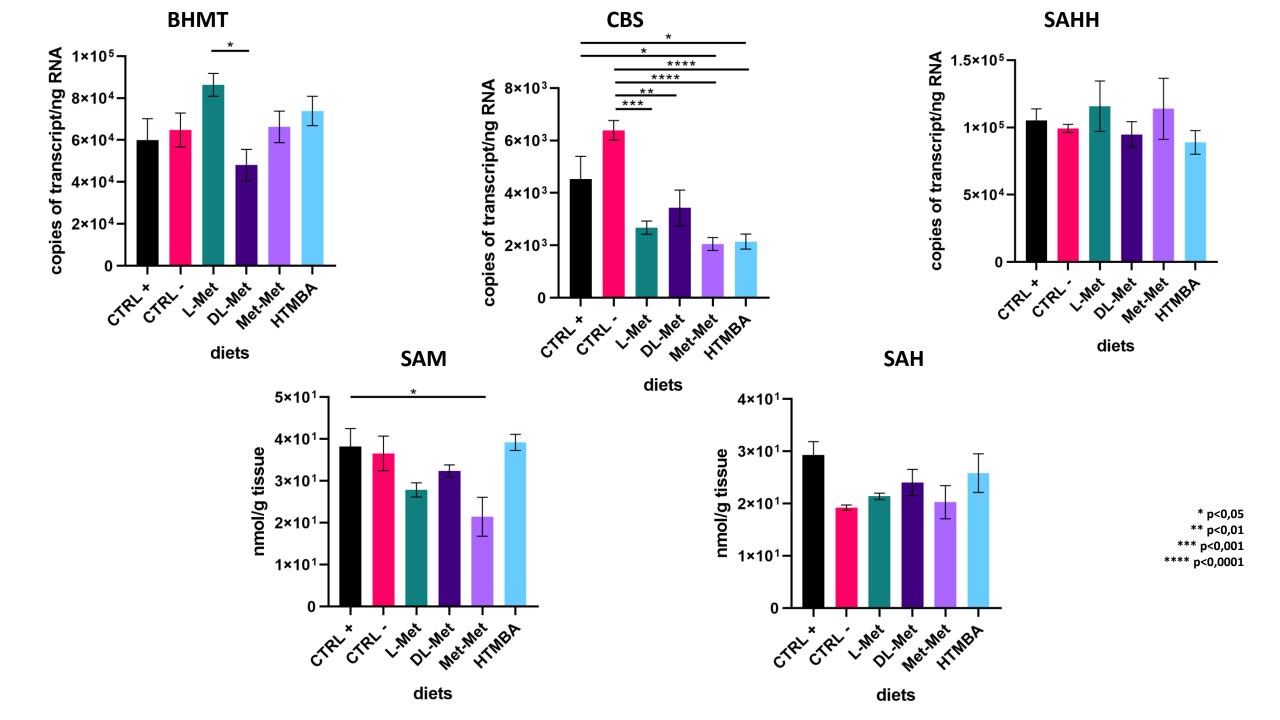
Changes in the metabolism of Met can influence the production of nutrients essential for proper functioning of the skeletal, cardiovascular, and nervous systems.

Homocysteine: a sulphur amino acid metabolite derived from Met. The maintenance of methyl groups and homocysteine homeostasis in the hepatic tissue is dependent on the balance between S-adenosylhomocysteine (SAH) and its precursor, a powerful inhibitor of transmethylation reactions, S-adenosylmethionine (SAM).

BHMT: Betaine-Homocist. S-Methyltransferase

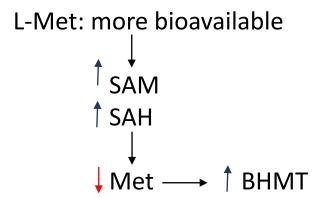
CBS: Cystathionine-β-Synthase


SAHH: S-Adenosylhomocysteine Hydrolase


SAM: S-Adenosyl-Methionine

SAH: **S-Adenosyl-L-Homocysteine**

	CTRL +	CTRL -	L-Met	DL-Met	Met-Met	НТМВА
FCR BIO	1.33 ± 0.04	1.42 ± 0.06	1.35 ± 0.01	1.32 ± 0.01	1.32 ± 0.03	1.35 ± 0.05
FCR ECO	1.34 ± 0.04	1.43 ± 0.06	1.36 ± 0.01	1.33 ± 0.01	1.33 ± 0.03	1.36 ± 0.04
SGR	0.83 ± 0.02	0.79 ± 0.02	0.83 ± 0.01	0.82 ± 0.01	0.82 ± 0.01	0.81 ± 0.04
Pm iniz. (g)	46.38 ± 0.69	46.25 ± 0.47	46.26 ± 0.47	46.74 ± 0.41	47.67 ± 0.68	46.77 ± 1.21
Pm fin. (g)	103.32 ± 1.19	99.38 ± 2.09	103.21 ± 0.34	103.62 ± 1.54	105.69 ± 0.57	102.26 ± 1.22
Accr. (%)	122.82 ± 5.05	114.88 ± 4.48	123.11 ± 1.51	121.69 ± 1.76	121.76 ± 2.22	118.77 ± 8.02
Mortalità (%)	0.62 ± 0.54	0.94 ± 0.01	0.62 ± 0.54	0.94 ± 0.94	0.61 ± 0.52	0.92 ± 0.92
Feed Intake	75.83 ± 1.52	67.23 ± 13.26	68.88 ± 13.88	67.17 ± 14.60	68.35 ± 12.90	67.03 ± 14.21


FCR BIO:

CTRL- vs HTMBA p<0.05

FCR ECO:

CTRL- vs DL-Met p<0.05 CTRL- vs HTMBA p<0.05

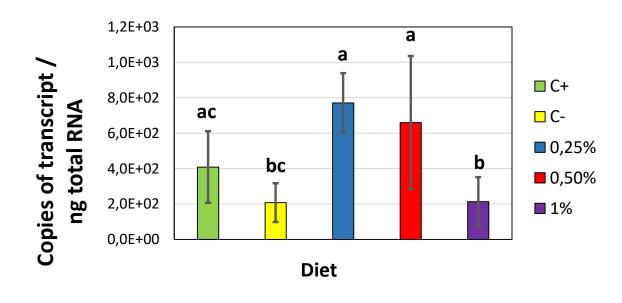
Hypothesis:

L-met can be directly used to synthesize SAM or can be degraded through pathways such as transamination. SAM can undergo the transmethylation pathway to synthetize homocysteine or the transsulfuration pathway, with the products cysteine, glutathione, taurine.

HTMB, DL-Met protect, Met-Met, DL-Met: slow assimilation

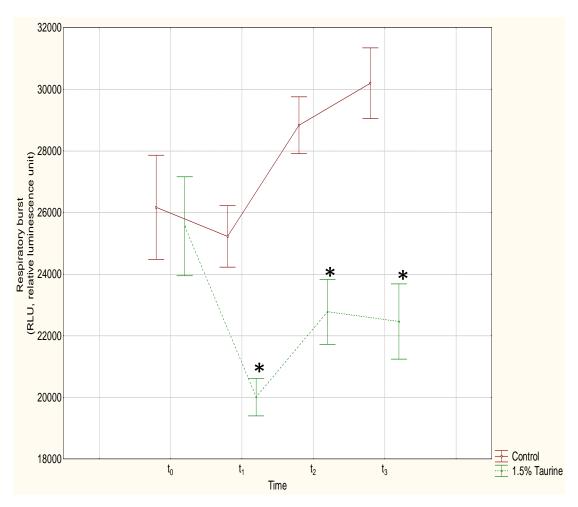
↓ SAH

It is a temporal issue


Taurine need in the diet for Rainbow trout

- **Positive control**: (fish meal diet base)
- **Negative control:** (vegetable meal diet poor in Tau)
- **0,25**% = (negative control + 0,25% Tau)
- **0,50%** = (negative control + 0,50% Tau)
- 1,0% = (negative control + 1,0% Tau)


TauT expression in kidney



TauT expression in liver



Taurine

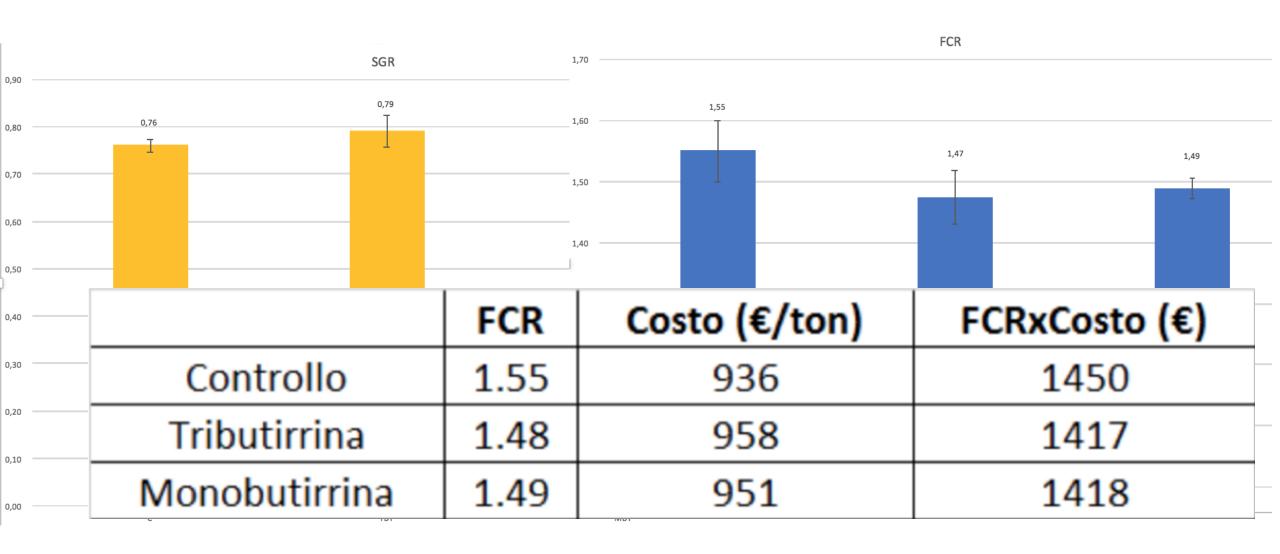
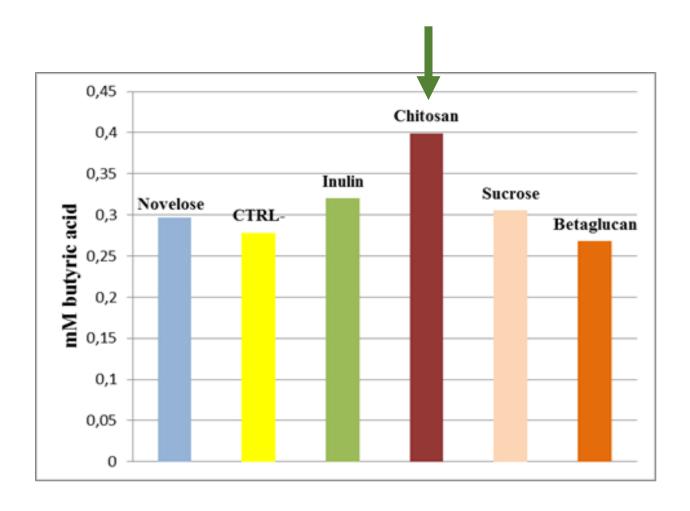
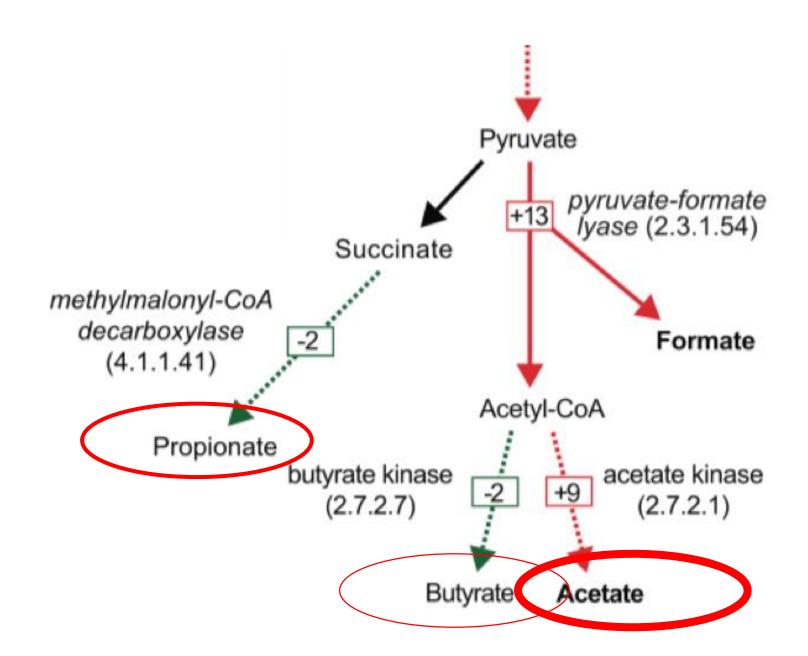


Table 3. The RBA values after PMA stimulation in Ctrl and 1.5% Tau group. (*) means significant differences between groups for the same t (p<0.05).

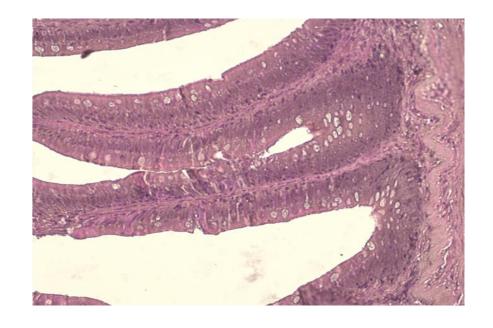


Effects of Butyrate on SGR and FCR

Preliminary in vitro test for butyric acid

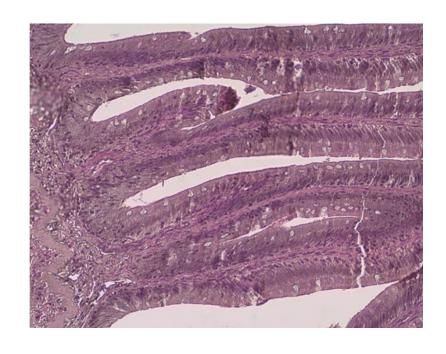

quantification

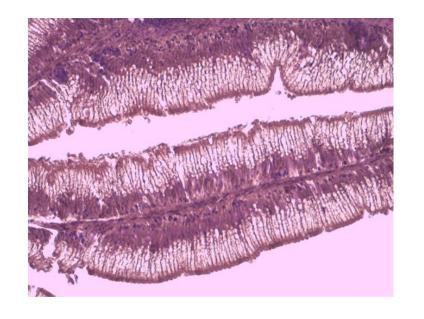
- Collecting feces from seabass fed with a control diet (Bulk collection);
- Anaerobic growth of feces in medium with prebiotics addition;
- Extraction of butyric acid following De Baere et al. (2013) protocol;
- Quantification by HPLC-UV;
- Among all prebiotics, chitosan resulted the substrate giving the highest level of butyric acid.


Rainbow trout fecal content

	Acetate (mM/I)	Propionate (mM/l)	Butyrate (mM/I)
Time T ₀	7.05	Traces	Traces
Control	6.38	Traces	0.51
Mono-Butyrate	12.88	1.97	1.48
Insect-chitin	12.26	1.22	2.06
Shrimp meal	13.74	0.74	0.30

Samuel & Gordon, 2006, modif.


PROXIMAL INTESTINE DISTAL INTESTINE



10 X

PROXIMAL INTESTINE DISTAL INTESTINE

10 X

WATER AND GUT MICROBIOTA AS MARKER OF ENVIRONMENTAL CONDITIONS AND NUTRITIONAL WELFARE

- WATER MICROBIOLOGICAL GARDEN A peculiar microbic ecosystem has been observed caractherizing the farming systems, where *Proteobacteria* and *Bacteroidetes* were the main colonizing phyla, indicating different risks for bacterial diseases;

- No significant differences were observed among water samples collected within different formulation tests, but among samples collected at different time, indicating a continuous evolution of the water microbiota.

DEGLI STUDI

INS F

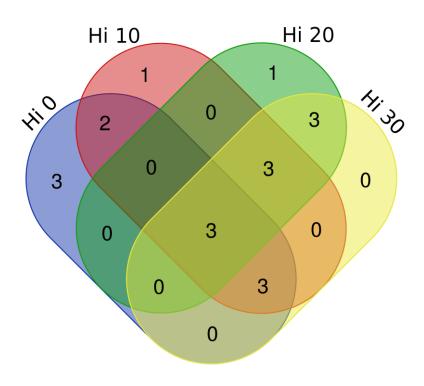
Substitution plant oil with insect oil 66%

Growth performances


	Hi 0	Hi 10	Hi 20	Hi 30
BW _i (g)	67.01 ± 1.71	66.38 ± 2.51	65.63 ± 0.42	66.95 ± 2.31
$BW_f(g)$	223.20 ± 23.67	220.34 ± 29.60	216.97 ± 26.16	221.74 ± 22.25
WG (g)	156.86 ± 4.33	154.20 ± 6.04	146.89 ± 8.03	152.30 ± 10.18
SGR	1.42 ± 0.01	1.40 ± 0.06	1.38 ± 0.04	1.38 ± 0.04
FCR	0.90 ± 0.02	0.93 ± 0.04	0.95 ± 0.03	0.93 ± 0.04

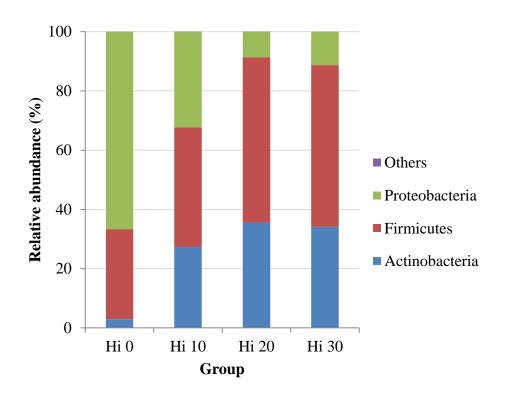
BWi initial body weight, BWf final body weight, WG weight gain, SGR specific growth rate, FCR feed conversion ratio

All fish had tripled their initial body weight, and growth performance parameters (WG and SGR) likewise FCR were not negatively affected by the diet composition.


Analysis of gut microbiota structure

FECES

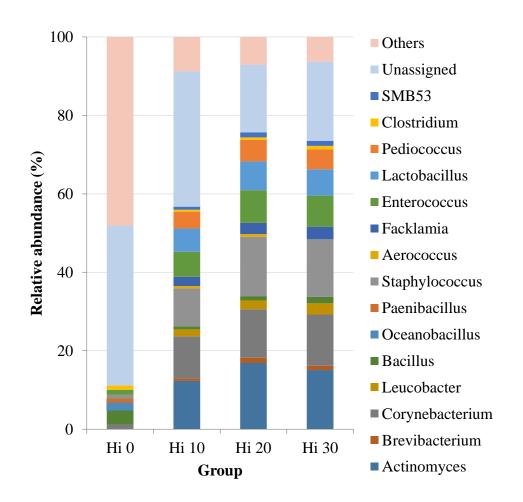
The "core microbiota" was constituted by 62 OTUs (shared by 80% of samples), **23 OTUs** were common to 100% of samples with a dominance of bacteria assigned to *Firmicutes* phylum.


MUCOSA

The "core microbiota" was constituted by only **3 OTUs** assigned to *Propiobacterinae*, *Shewanella*, and *Mycoplasma* genera.

Effects of *H. illucens* supplemented diets on intestinal microbial communities

The whole microbial community profile of fecal samples was mainly comprised of 7 phyla, 12 classes, 26 orders, 68 families, 98 genera, and 55 species



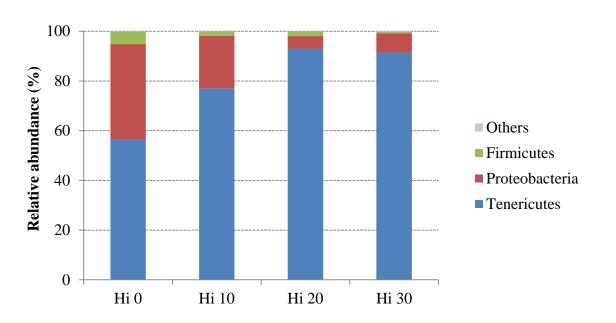
At phylum level

The amounts of *Actinobacteria* and *Proteobacteria* were significantly influenced (p<0.05) by including insect meal in the diet

	Hi 0	Hi 10	Hi 20	Ні 30
Phylum				
Actinobacteria	2.94 ± 1.16 b	27.30 ± 3.31^{a}	35.56 ± 1.37 a	34.08 ± 3.58^{a}
Firmicutes	30.39 ± 9.76	40.38 ± 4.79	55.77 ± 1.55	54.66 ± 4.32
Proteobacteria	66.62 ± 9.43 a	32.16 ± 7.59^{a}	8.59 ± 2.13 b	$11.21 \pm 7.77^{\text{ b}}$

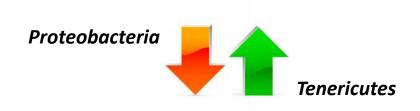
At genus level

	Hi 0	Hi 10	Hi 20	Ні 30
Genus	-			
Actinomyces	0.25 ± 0.07^b	12.29 ± 1.30^{a}	16.86 ± 0.44^{a}	15.08 ± 1.51^{a}
Brevibacterium	0.10 ± 0.03 b	0.65 ± 0.04^{ab}	$1.38 \pm 0.16^{\rm a}$	1.12 ± 0.32^{a}
Corynebacterium	1.23 ± 0.42^{b}	$10.74\pm1.78^{\rm a}$	$12.33 \pm 0.94^{\rm a}$	13.04 ± 1.40^{a}
Leucobacter	$0.14\pm0.08^{\:b}$	$1.76\pm0.16^{\rm \ a}$	$2.27\pm0.25^{\rm a}$	2.83 ± 0.48^{a}
Bacillus	3.60 ± 2.00	0.76 ± 0.07	1.10 ± 0.18	1.66 ± 0.75
Oceanobacillus	$1.96\pm0.75~^{\rm a}$	$0.24\pm0.04^{~ab}$	0.19 ± 0.03^{ab}	$0.10\pm0.01^{\ b}$
Paenibacillus	0.99 ± 0.52	0.12 ± 0.03	0.23 ± 0.05	0.27 ± 0.06
Staphylococcus	0.97 ± 0.34^{b}	$9.69 \pm 1.54^{\rm a}$	15.13 ± 1.11 a	$14.66 \pm 1.89^{\text{ a}}$
Aerococcus	n. d. ^b	$0.61\pm0.13^{\rm \ a}$	$0.68\pm0.04^{\rm a}$	$0.42 \pm 0.07^{\rm \ a}$
Facklamia	$0.07\pm0.02^{\:b}$	$2.34\pm0.46^{\rm a}$	$2.84\pm0.20^{\rm a}$	3.22 ± 0.57 a
Enterococcus	1.32 ± 0.48 b	$6.36\pm0.77~^{\mathrm{a}}$	$8.35\pm0.27^{\rm \ a}$	7.93 ± 0.87 ^a
Lactobacillus	$0.32\pm0.08^{\:b}$	5.98 ± 1.00^{a}	7.33 ± 0.59^{a}	$6.75 \pm 0.43^{\text{ a}}$
Pediococcus	0.23 ± 0.14^{b}	$4.28\pm0.68^{\rm \ a}$	$5.45 \pm 0.29^{\rm \ a}$	$5.03 \pm 0.53^{\text{ a}}$
Clostridium	1.05 ± 0.43	0.49 ± 0.18	0.66 ± 0.18	0.89 ± 0.49
SMB53	$0.04\pm0.02^{\;b}$	0.77 ± 0.12^{ab}	$1.30\pm0.23^{\rm \ a}$	1.32 ± 0.11^{a}


Actinomyces, Brevibacterium, Corynebacterium, Leucobacter, and Staphylococcus

LAB: Aerococcus, Facklamia, Enterococcus, Lactobacillus, and Pediococcus

Beneficial bacterial species positively correlated to insect-meal diets: Corynebacterium variabile, Lactobacillus paraplantarum, Lactobacillus zeae, Weisella cibaria, Clostridium butyricum, and Clostridium fimentarium


Dietary modulation of autochthonous intestinal microbiota

The bacterial OTUs found in fish mucosa samples were mainly comprised of 6 phyla, 7 classes, 10 orders, 15 families, and 22 genera

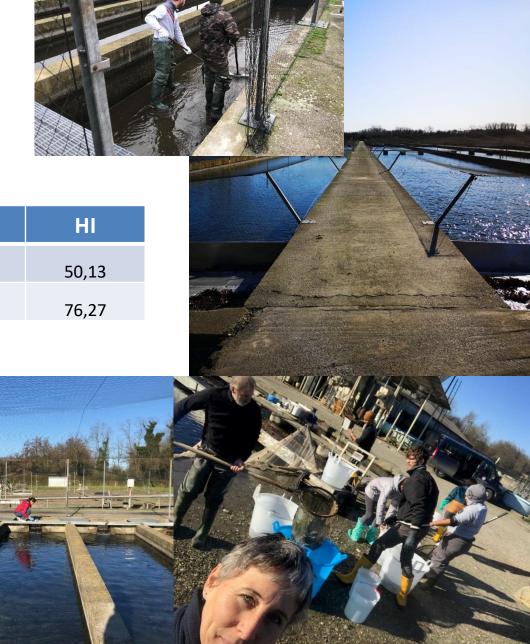
At phylum level

Tenericutes and **Proteobacteria** were significantly influenced by insect meal inclusion (20% and 30%) in the diet.

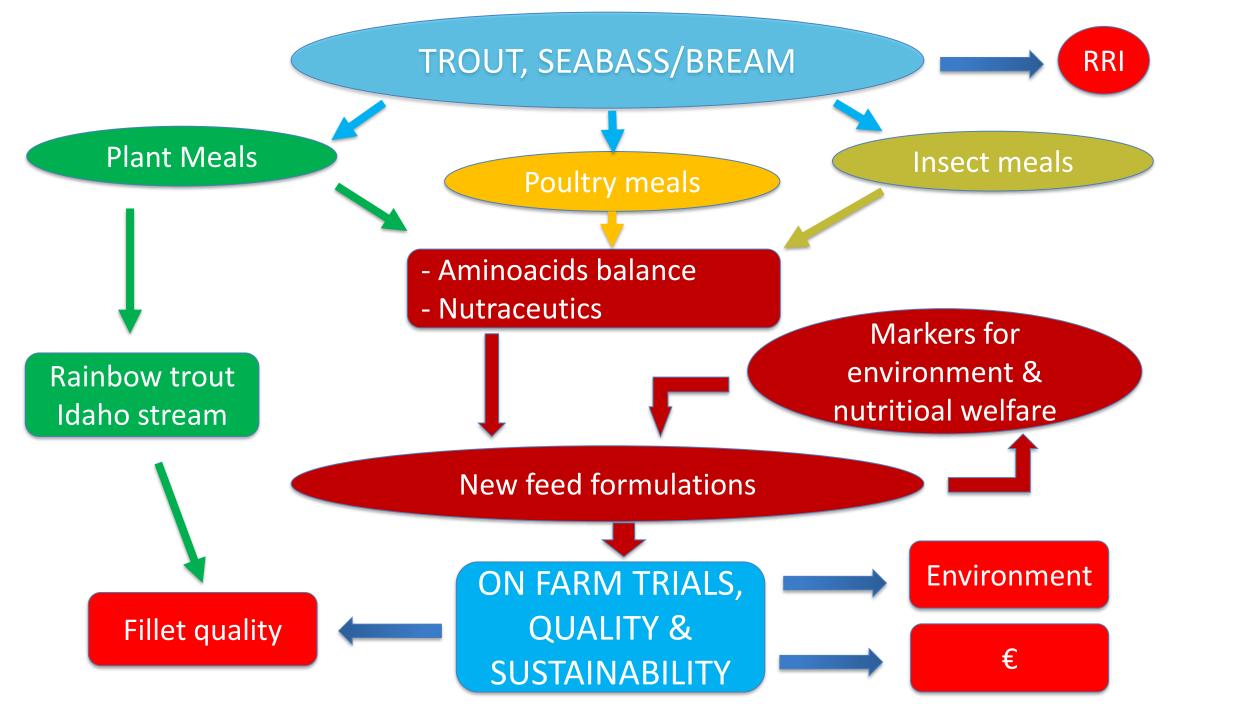
Phylum	Hi 0	Hi 10	Hi 20	Hi 30
Tenericutes	56.48 ± 21.74^{b}	77.06 ± 17.44^{ab}	93.03 ± 10.12^{a}	91.52 ± 12.68^{a}
Proteobacteria	$38.36 \ \pm \ 18.26^a$	$21.07 \ \pm \ 16.85^{ab}$	5.03 ± 7.51^{b}	7.69 ± 12.82^{b}
Firmicutes	5.05 ± 8.37	1.84 ± 4.00	1.86 ± 4.34	0.49 ± 0.96

Insect meal: not only growth but beneficial effects on the microbiota garden

- ✓ Insect meal was well accepted by fish up to 30% inclusion.
- ✓ Our results confirmed that bacterial communities adhering to mucosa differ from transient microflora in fish intestine: Proteobacteria and Firmicutes dominated the allochthonous gut microbiota while Tenericutes and Proteobacteria phyla harboured trout intestinal mucosa.
- ✓ Dietary Hi meal positively modulated gut microbiota (autochthonous and allochthonous) increasing its richness and diversity: effect of chitin and lauric acid (C12:0) contained in Hi prepupae.
- ✓ OTUs attributable to LAB (beneficial genera) were only found in high amount in the gut content samples of trout fed insect meal, but were practically absent in gut mucosa of the same fish. The increasing number of LAB could be promoted by chitin, which acts as a prebiotic.
- ✓ An increased number of bacteria belonging to *Mycoplasma* genus was found in the mucosa of trout fed Hi 20 and Hi 30 diets. They are obligate commensal microorganisms of the gut ecosystem that produce lactic acid and acetic acid as their major metabolites. *Mycoplasma could have a beneficial action on host health.*
- ✓ Hi meal caused a significant reduction of *Proteobacteria* (*Gammaproteobacteria*) both in the gut digesta and mucosa. *Interestingly all genera adversely affected by insect-meal diets were Gram-negative bacteria that include potential pathogen species*.



Rainbow trout on-farm trial feeding "AGER 4F Feeds"


3 diets (4 replicates)

- 1) Contr Commercial feed (Plant based)
- 2) PBP (Poultry meal based feed)
- 3) HI (Insect meal based feed)

	CTRL	PBP	HI
PI (kg)	50,20	50,25	50,13
Peso al 3/02/2020 (kg)	77,05	77,01	76,27

DISSEMINATION AND RESPONSIBLE RESEARCH & INNOVATION (RRI)

Acquacoltura & Sostenibilità

Comunicazione e disseminazione dei risultati a cura di Consorzio Italbiotec

L'attività di comunicazione condotta dal progetto 4F – FineFeedForFish mira alla diffusione di nuove buone pratiche e soluzioni ecosostenibili al comporto ittico e ad incrementare la consapevolezza dei cittadini circa il contributo dell'acquacoltura nell'affrontare la sfida al cambiamento climatico. Fin dall'avvio del progetto, 4F si è impegnato nella progettazione e sviluppo di prodotti di comunicazione in grado di coinvolgere gli stakeholder, qui di seguito si riportano i più significativi:

- 35 articoli di divulgazione pubblicati sul sito AGER e condivisi su testate online + 16.000 lettori raggiunti
- 14 articoli scientifici pubblicati su riviste peer review
- 1 servizio televisivo su rete nazionale
- 28 presentazioni orali dei risultati scientifici presso congressi nazionali ed internazionali
- 12 video divulgativi dedicati alla valorizzazione degli obiettivi e delle strategie +500 visualizzazioni
- 1 Corso e-learning (8 video lezioni) dedicato all'acquacoltura sostenibile e al benessere animale
- 1 Summer School «Acquacoltura & Sostenibilità» con 30 studenti, ricercatori e professionisti
- 1 pubblicazione «ACQUACOLTURA E COMUNICAZIONE: strumenti e metodi di debunking»
- Poster, roll-ups, leaflets prodotti e distribuiti in forma digitale e cartacea + 2500 lettori raggiunti
- 1 Community online «Acquacoltura& Sostenibilità» + 250 utenti attivi

ACQUACOLTURA E COMUNICAZIONE: strumenti e metodi di debunking

Acquacoltura Summer School 2019 - Alghero

Peer

Effect of a specific composition of short- and medium-chain fatty acid 1-

Rev Fish Biol Fisheries https://doi.org/10.1007/s11160-019-09558-y

ORIGINAL RESEARCH

Economic meal in aqu

Italian

L. Mulazzani¹, G. Malorgio¹, F. Ma ¹University of Bologna, ²University of S

© Springer Nature

EAFE CONFERENCE 20

modulate in the die

Genciana Tero Chiara Ceccott

Received: 5 Octob

Rainbow

Simona Rimoldi 10 and Genciana Terov

- Department of Bio simona.rimoldi@
- Department of As 10095 Grugliasco,
- Correspondence:

Received: 8 March 20

The Effects illucens Pre of Rainboy

> Silvia Cappellozza 1,*00 Anna Rizzolo 40, Giova Andrea Badaile 6, Giuse

- Consiglio per la Ricero Centro di Ricerca Agri
- Dipartimento Scienze 20133 Milan, Italy; mg
- Consiglio per la Ricero Centro di Ricerca Zoo
- Consiglio per la Ricer Centro di Ricerca Inge anna.rizzolo@crea.gov
- Dipartimento di Biote genciana.terova@unir gianluca.tettamanti@u
- Museo Vivente degli l enzo@micromegamor
- Dipartimento di Agro Università degli Studi
- Dipartimento di Biosc
- Dipartimento di Agra silvia.caccia@unina.it
- Correspondence: silvi

Received: 26 March 2019:

animals

A First Attempt to Produce Proteins from Insects by Means of a Circular Economy

Silvia Caccia 9, Morena

Protective Effect of Dietary Taurine from ROS Production in European Seabass under Conditions of Forced Swimming

MDPI

Chiara Ceccotti 1, Basim S.A. Al-Sulaivany 2, Omar A.M. Al-Habbib 3, Marco Saroglia 1, Simona Rimoldi 10 and Genciana Terova 1,*0

- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Department of Biology, Faculty of Science, University of Zakho, Zakho, 420011 Kurdistan Region, Iraq
- College of Science, International University of Erbil, 44001 Kurdistan Region, Iraq
- Correspondence: genciana.terova@uninsubria.it; Tel.: +39-0332-421-428

Received: 10 July 2019; Accepted: 20 August 2019; Published: 26 August 2019

THE PRINCIPAL MEMBERS OF THE "4F" TEAM:

Marco Saroglia¹, Genciana Terova¹, Laura Gasco², Pietro Pulina³, Sergio Uzzau⁴, Massimo Labra⁵, Ilaria Re⁷, Ronald Hardy⁸, Roberto Anedda⁴, Marino Prearo⁹, Ivo Zoccarato², (and coll.)

https://acquacoltura.progettoager.it/index.php/acquacoltura-per-la-ricerca/itemlist/user/51-4f