

"The continuing importance of fishmeal and fish oil in aquafeeds"

INTERNATIONAL EXHIBITION AND CONFERENCE FOR AQUACULTURE, ALGACULTURE, VERTICAL FARMING AND FISHING INDUSTRY Dr Neil Auchterlonie, IFFO February 16th 2018

Annual Global Production of FM & FO

FIGURE I

*Includes Denmark, Norway and Iceland source: IFFO, FAO and ISTA Mielke GmbH, OIL WORLD

World Fish oil Production ('000 mt) Scandinavia* Chile Peru U.S.A China,PR Other 1,200 1.117 1,073 1,064 1,048 952 954 940 1,000 922 891 878 800 600 400 200 0 2013 2007 2008 2009 2010 2011 2012 2014 2015 2016 * Includes Denmark, Norway & Iceland source: IFFO and ISTA Mielke GmbH, OIL WORLD

Fish Oil

c.1 million tonnes p.a.

Fishmeal c.5 million tonnes p.a.

FMFO by Market

FMFO in Aquaculture

Process:

Whole fish raw material sources:

INDUSTRIAL GRADE FORAGE	Landings tonnes							
Gulf menhaden (Brevoortia patronus)	479,000							
Atlantic menhaden (Brevoortia tyrannus)	212,000							
Sand-eel (Ammodytes spp.)	486,500							
Total 1,175,000 tonnes of which 100% converted								
FOOD GRADE FORAGE								
Peruvian anchovy (Engraulis ringens)	8,468,000							
Japanese anchovy (Engraulis japonicus)	1,567,000							
South African anchovy (Engraulis encrasicolus)	228,000							
Sprat (Sprattus sprattus)	262,000							
Blue whiting (Micromesistius poutassou)	678,500							
Capelin (Mallotus villosus)	958,500							
Total 12,162,000 tonnes of which an estimated 90% was converted								
PRIME FOOD FISH								
Atlantic herring (Clupea harengus)	656,500							
European sardine (Sardina pilchardus)	639,000							
Chilean jack mackerel (Trachurus murphyii)	1,870,000							
Japanese jack mackerel (Trachurus japonicas)	320,000							
Chub mackerel (Scomber japonicus)	1,403,500							
Californian sardine (Sardina sagax caerulea)	556,000							
South African sardine (Sardina sagax)	263,000							
Total 5,708,000 tonnes (average landings 2001 – 2006) of which an unknown percentage								
was converted								

Raw material: Whole fish & Byproduct proportions

67

33

Estimated by Shepherd, 2012

75

25

Calculated by Jackson & Newton, 2016

Predicted by FAO for 2025 (2016)

62

38

Marine ingredients are the foundation for modern fed aquaculture & facilitated technological development

Aquaculture continues to grow....

More feed is required

Source: Fry, J.P. et al., 2016. Environmental health impacts of feeding crops to farmed fish. Environment International, 91, pp.201–214. Available at: http://dx.doi.org/10.1016/j.envint.2016.02.022

Figure 3: Salmon feed formula development, a gradual replacement of marine ingredients

FMFO inclusion rates declining

05 2015

Fig. 1. Nutrient sources in Norwegian salmon farming from 1990 to 2013. Each ingredient type is shown as its percentage of the total diet.

Ytrestoyl, et al. (2015) Aquaculture 448 365–374 http://dx.doi.org/10.1019/incruaculture.2015.06.023

Nutritional importance:

 Fishmeal Protein Digestibility Amino acid profile Micronutrients **Fish oil** Energy LC polyunsaturated fatty acids (EPA & DHA) Important factors for: Growth Quality • Health

Amino acid profile

Table 3. Percentage of essential amino acids (EAA)¹ in fishmeal (FM), rendered meat meal (MM), poultry by-product meal (PBM), blood meal (BM), soybean meal (SBM). Percentage c crude protein in the meal (in parenthesis).

Essential Amino Acid	FM (64.5%) ²	MM (55.6%) ²	PBM (59.7%) ²	BM (8°	
Arginine	3.82	3.60	4.06	0	ets
Histidine	1.45	0.89	1.0	ile	nee v
Isoleucine	2.66	1.64		14	· < (15)
Leucine	4.48	2.8⊏	e	sei	01
Lysine	4.72	, K		J' ALS	3.08
Methionine + Cystine ³	2.31	ains	lost a	mer	1.43
Phenylalanine + Tryosine⁴	con	hat	quire	8.47	4.20
Threonir Q	3. 25	V. 2 (J.94	3.76	1.89
Try	ciu	cit	0.46	1.04	0.69
"FIST C		.52	2.86	7.48	2.55

the EAA composition of each feedstuff 3 NRC (National Research Council, Nutrient 1, National Academy of Sciences, Washington,

²Percent for total crude protein in feedstuff. ³Cystine can be synthesized from methionine. ⁴Tyrosine can be synthesized from phenylalanine.

UF IFAS Extension

w∈ Reg∟

DC).

The Benefits of Fish Meal in Aquaculture Diets R. D. Miles and F. A. Chapman²

"All finfish studied to date have been shown to require the same 10 amino acids which are considered <u>essential</u> for most animals. These include arginine, histidine, isoleucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine."

From: Robert P. Wilson, "Amino Acids and Proteins, in Fish Nutrition, 2nd Edition, 1989, Ed. John E. Halver.

Importance of micronutrients – Minerals

Mineral requirements of fish

Macrominerals (g/kg diet)

Microminerals (mg/kg diet) (trace elements)

Calcium Phosphorus* Sodium Potassium* Chlorine Magnesium* Sulfur

Iron Manganese* Copper Zinc* Cobalt Selenium* Iodine* Molybdenum

* Required in the diet, but not always supplemented in practical feeds

Extract from: Ronald W. Hardy, University of Idaho, Fish Nutrition Research Differences and similarities with livestock nutrition and what the future holds. Part I.: <u>http://www.pitt.edu/~super4/33011-34001/33021.ppt</u> Table 3: The mineral and trace element contents of feed meals

	Anc	hovy	Her	Herring Menhaden		Tuna		Salmon	Jack Mackerel	White fish	Sandeel	Soya	Canola/ rapeseed	
	Mean	Range	Mean	Range	Mean	Range	Mean	Range			Mean	Mean	Mean	Mean
Calcium %	3.89	2.79-5.60	2.05	1.32-3.54	5.23	3.94-6.82	8.36	5.82-12.6	3-4		7.66	2.8	0.29	0.17
Chlorine %	1.41		1.01		0.55		1.01				1.25		0.03	0.04
Magnesium %	0.25	0.16-0.33	0.12	0.09-0.13	0.15	0.13-0.17	0.23	0.16-0.30	0.15 - 2.0		0.17	0.2	0.29	0.41
Phosphorus (total) %	2.54	1.85-3.55	1.90	1.01-2.29	2.93	2.39-3.67	4.44	3.28-6.59	2 - 3		4.80	2.2	0.60	1.17
Phosphorus (available) %			1.90								4.80		0.24	
Potassium %	0.75	0.39-0.84	1.16	0.84-1.38	0.71	0.60-1.10	0.73	0.58-0.84	2 - 3		0.87	0.2	1.97	1.39
Sodium %	0.95	0.48-1.49	0.57	0.29-1.03	0.38	0.25-0.44	0.74	0.52-1.17	0.4 - 0.5		1.04	1.0	0.03	0.04
Sulphur %	0.54		0.46				0.68				0.48			0.30
Aluminum mg/kg	77.2	48.0-190	33.0	22.5-97.5	352	161-615	150	98.0-180				82		
Barium mg/kg	5.40	2.00-10.9	3.00	2.0-15.0	20.4	4.9-51.5	4.52	2.0-6.5						
Boron mg/kg	13.7	9.00-19.8	6.30	4.45-8.45	14.1	12.2-19.8	16.4	11.1-21.5						
Chromium mg/kg	10.2	6.6-23	4.20	3.0-6.2	11.0	8.5-13.1	17.6	11.9-21.5						
Copper mg/kg	8.30	5.0-13.8	5.40	4.6-8.8	10.9	6.6-17.5	10.6	8.00-15.4	2 - 3		6.45	4.2	43	19
Iron mg/kg	237	150-725	138	105-255	491	250-670	362	235-450	70 - 80		241	208	93.0	208
Manganese mg/kg	9.73	4.3-21.1	3.07	2.0-4.25	36.3	21.1-65	8.53	7.10-15.0	15 - 20		11.2	12	38	21
Selenium mg/kg	1.38	1.18-1.73	2.31	1.73-3.43	2.19	1.22-3.98	4.47	3.40-6.20	0.8-0.9		1.56	2.5	0.35	0.06
Strontium mg/kg	87.8	36.5-161	71.0	22.8-171	63.4	37.5-96	> 200							
Zinc mg/kg	108	90-146	122	105-132	147	133-169	212	151-273	200 - 250		95	108	56	61
Iodine mg/kg									2 - 3					

din.

Importance of micronutrients – Vitamins

Vitamin requirements of salmon and growing chickens (IU or mg/kg dry diet)

	Vitamin	Salmon/trout	Chickens		
	Vitamin A	2500	1500		
1	Vitamin D	2400	200		
	Vitamin E	50	16		
	Vitamin K	unknown	0.5		
	Thiamin	1	1.3		
2	Riboflavin	7	3.6		
-	Pyridoxine	6	3.0		
	Pantothenic acid	20	10		
	Niacin	10	11		
	Biotin	0.15	0.10		
	Folic acid	2	0.25		
	Vitamin B ₁₂	0.01	0.003		
	Ascorbic acid	50	not required		
	Choline	800	500		
	myo-Inositol	300	not required		

*values in vellow are lower for chickens

Extract from: Ronald W. Hardy, University of Idaho, Fish Nutrition Research Differences and similarities with livestock nutrition and what the future holds. Part I.: <u>http://www.pitt.edu/~super4/33011-34001/33021.ppt</u>

Table 4: The vitamin contents of feed meals

	Anchovy	Herring	Menhaden	Tuna	Salmon	Jack Mackerel	White fish	Sandeel	Soya	Canola/ Rapeseed
	Mean	Mean	Mean	Mean			Mean	Mean	Mean	Mean
Biotin mg/kg	0.25	0.46	0.18	0.20			0.08		0.25	0.97
Choline mg/kg	4404	4833	3112	2994			3750		2804	2764
Folic acid mg/kg	0.18	0.4	0.12				0.43		3.6	1.4
Niacin (nicotinic acid, Vitamin B ₃)mg/kg	97.5	106	55	144			54.5		27	41
Panthothenic acid (vitamin B ₅) mg/kg	12.2	24.0	8.6	7.7			12.5		14.5	13.7
Pyridoxine (Vitamin B ₆) mg/kg	4.07	4.24	4.66				4.61	3.0	8	7.0
Riboflavin (vitamin B2) mg/kg	6.85	8.50	4.8	6.79			7.8	7.0	3.55	3.3
Thiamin (vitamin B1) mg/kg	0.10	0.40	0.6				1.7	1.0		6.6
Vitamin B12 mg/kg	0.27	0.34	123	0.31			0.08	0.28		
Vitamin E (tocopherol) mg/kg	5.00	22.1	12.0	5.6			8.9	8.0		16
Vitamin K mg/kg		2.2								

Fish nutrition studies are based on identification of levels that avoid deficiency

"Unfortunately, limited research effort has been directed to characterize the pathological changes associated with disorders linked to nutrient deficiencies in fish"

Lall, S. and Lewis-McCrea, L.M. (2007) Role of nutrients in skeletal metabolism and pathology in fish – An overview. Aquaculture 267, 3-19 doi:10.1016/j.aquaculture.2007.02.053

Deficiency threshold RDA or equivalent Optimal Overdose

What about optimisation? How do requirements change with species? With farming system? With life cycle stage? With specific pathogen challenge? Scope for customised diets....

Reducing FMFO in aquafeeds has repercussions.....

SCIENTIFIC OPINION

ADOPTED: 25 January 2017 doi: 10.2903/j.efsa.2017.4713

01. 10.2909/j.0138.2017.4715

Safety of vitamin D₃ addition to feedingstuffs for fish

EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Guido Rychen, Gabriele Aquilina, Giovanna Azimonti, Vasileios Bampidis, Maria de Lourdes Bastos, Georges Bories, Andrew Chesson, Pier Sandro Cocconcelli, Gerhard Flachowsky, Jürgen Gropp, Boris Kolar, Maryline Kouba, Marta López-Alonso, Secundino López Puente, Alberto Mantovani, Baltasar Mayo, Fernando Ramos, Maria Saarela, Roberto Edoardo Villa, Pieter Wester, Lucio Guido Costa, Noël Dierick, Paola Manini, Jordi Tarrés-Call and Robert John Wallace

Marine Ingredients & Aquafeed Palatability

June 2016, Volume 15, Issue 3, pp 561–56

Palatability of water-soluble extracts of protein sources nd replacement of fishmeal by a selected mixture of protein sources for juvenile turbot (*Scophthalmus naximus*)

Authors and affiliations

n evaluation of the complete replacement of both fishmeal and fish oil diets for juvenile Asian seabass, *Lates calcarifer* ett Glencross⁴⁺, David Byth⁴, Simon Irvin⁹, Nicholas Bourne⁴, Marcel Campet⁴⁻¹, scal Boiset⁴, Nicholas M. Wade⁴

"Poor palatability is a limiting factor for replacing fishmeal with other protein sources in aquaculture"

"The feed-palatability issue may be overcome, perhaps through the inclusion of krill meal"

"...it has also been determined that a critical threshold of 15% fishmeal was pertinent to barramundi, based on a diet balanced for digestible protein, energy and amino acids using a plant protein concentrate as the alternative (Glencross et al., 2011)..."

Sustainability: Management of forage fish stocks

Managing a crucial link in ocean food webs A report from the Lenfest Forage Fish Task Force Ray Hilborn study disputes previous findings on forage fish
By Cliff White
Published on April 3, 2017
SHARE f I in I

A new study has been published today by a scientific group led by University of Washington fisheries researcher Ray Hilborn that disputes previous findings on the impact of human and natural predation on forage fish such as anchovies, sardines and herring.

Sustainability: Certification

• IFFO Responsible Supply

- 132 certified sites
- 17 countries
- 18 fisheries
- 129 byproducts
- Proportion of global annual production certified is significant

49% by the end of 2017

- Marine ingredients are the foundation of modern fed aquaculture;
- Marine ingredients have nutritional benefits beyond protein & energy supply;
- Those benefits have +ve impacts on survival, growth and feed efficiency;
- All ingredients are complementary and support the growth of the aquaculture industry volume is required.

"Fishmeal and fish oil are still considered the most nutritious and digestible ingredients for farmed fish feeds"

(FAO, 2016)

AQUAFARM

Questions?

Email: <u>nauchterlonie@iffo.net</u> Web: <u>www.iffo.net</u>