

Pordenone, 16-Feb-2018

Algae – Wastewater – Biogas

Robert Reinhardt

AlgEn, algal technology centre, Ljubljana, Slovenia

robert@algen.eu

Algae – Wastewater – Biogas

- Algal bacterial WW treatment
- Biogas recover energy from biomass
- Biogas digestate
- Projects
 - AlgaeBioGas
 - Saltgae
 - Water2REturn

How to start an Algae [– Biogas] project

Algal-bacterial WW treatment summary

- Oxygen producers
- Embeed more N, P
- Bind micro-pollutant
- Lower energy
- Less GHG release
- More resilent

- High area demand
- Weather dependent

Wastewater

• Wastewater

- organic compounds
- nitrogen (mostly ammonia)
- other nutrients (P)
- micro pollutants (drugs, chemicals, heavy metals)
- Chemical/Biological Oxygen Demand (COD/BOD)
- Algae & wastewater
 - Nature's method to treat wastewater
 - Technologically used for at least 60 years

Algal Bacterial (ALBA) Wastewater Treatment

- lagoon treatment
- shifting objectives in the past (energy was "free", no GHG paranoia)
- purpose of ALBA biomass
- algae : bacteria C : N
- more diverse microbial community → less sensitive to sudden changes (antibiotics, biocides, salt, ...)
- can use / recycle additional CO₂
- salty wastewater

A research topic of today

- no state of the art universal solutions
- algae bacterial community is unstable → needs to be tightly controlled
- WW may be dark no light for algae no oxygen for bacteria
- removal of heavy metals, accumulated toxic substances, salt, ...
- should be independent of weather
- harvesting sedimentation, DAF, ...
- dark / light sections
- floc ecology, auto-flocculation

Wastewater as nutrient source

- Negative price of nutrients
- Essential for any large scale low cost products

Wastewater as resource

- Algae & biogas basic technology for energy and nutrient recuperation from wastewater
- 1 m³ municipal wastewater contains 7 kWh
- We use 0.5 1 kWh to treat it

Anaerobic digestion

- Anaerobic bacteria (Archaea) converting organic matter to methane (and H₂, CO₂, H₂S, ...)
- A waste treatment technology

Biogas flavours

- Landfill gas
- Wastewater sludge
- Bio waste
- Wastewater (anaerobic treatment)
- Agricultural waste
- Energy crops
- Different technology levels
- Mesophilyc / thermophilic
- CHP / heat / biomethane

HTI tanks

EurObserv'ER 2013

Biogas in EU

- EU 17358 (end 2015)
- Legislation & subsidies
 - Gas grid \leftrightarrow CHP
 - Waste ↔ energy crops
 - Access to power grid
 - Renewable energy tarrifs
 - Nitrogen vulnerable zones

Number of biogas plants and total installed capacity in Europe 2011 - 2015

Biogas is the most efficient biofuel

17,358 biogas plants in Europe (31/12/2015) Total installed capacity of 8,728

Biogas digestate

- Ideally: all organics consumed
- Ideal agricultural fertilizer

 CO_2

Biogas digestate

- In reality:
 - Very dilute (80-150 m³/ha)
 - Logistics
 - Storage
 - Transportation
 - Machinery
 - Agro-technical problems
 - Liquid
 - Nutrient flushing from soil
- Separation to liquid and solid phase
 - Solid like ordinary fertilizer
 - Liquid wastewater, with only limited application to soil
- Waste, end-of-waste directive, control & monitoring

Liquid biogas digestate

- One of the hard-to-treat substances
- COD 8000 50000 mg O₂/L
- Classical WW processing (3 20 €/m³)
 - Energy consuming conversion or organics and nutrients to CO₂ and N₂
 - Loss of energy and nutrients
- Alternatives:
 - Drying
 - Ultrafiltering
 - Reverse osmosis
 - •
- Algal treatment

Algae as biogas substrate

- Hard to digest
- C : N ratio (high C substrate should be added)
- Pre-treatment required
 - Heating, enzymatic, fungal, bacterial, ultrasonification, pressure shock, ...
- Thermophilic process optimal
- If done properly biogas productivity comes close to corn silage (based on dry weight)
- Depends on species & composition
- Cannot be cost effective unless grown on wastewater or digestate

AlgaeBioGas Project

- Algal treatment of biogas digestate and feedstock production
- An Eco-Innovation project (CIP-EIP-Eco-Innovation-2012)
- Pilot and market replication project
- Two partners:
 - AlgEn, algal technology centre,
 - KOTO, biogas operator, animal waste treatment facility both in Ljubljana, Slovenia

AlgaeBioGas Objectives

Objectives:

- Demonstration centre design, construction, operation
- Prepare technology for replication
- Market development activities
- Finished in 2016
 - Demonstration centre operational (100m²)
 - Running for 3.5 years
 - Legislation analysis, LCA, business planning
 - Complementary technologies were tested
 - Technical development (controls, ponds)
 - Presentations & visits
 - Technology ready for Early Adopters

- Greenhouse
- Heating & cooling
- Exhaust gas supply (cooling, purification)
- Digestate supply (separation, anaerobic filter, storage)
- Sedimenter / clarifier & recycling
- DAF
- Control system

Greenhouse, ponds, mixing, CO₂

Digestate preparation

Control & instrumentation

Observed performance

Full scale estimate

- Model biogas CHP with 1 MW_e
- Digestate treatment: to recycle major part of nutrients
 - area 2 5 ha ponds
 - volume 3000 17000 m³
 - 60 200 t algae bacterial biomass p.a.
 - use approx the same amount of waste paper pulp (or other carbon rich substrate)
 - replacing 120 400 t dry mass of corn = 360 1200 t of corn silage
 - replacing 8 26 ha of corn fields

- Demonstration project to prove the technoeconomic feasibility of using algae to treat saline wastewater from the food industry
- Innovative Action Horizon 2020 project
- Started in June 2016
- Three demo sites starting now
 - Camporosso, Italy (dairy ww)
 - Ljubljana, Slovenia (tannery / hide warehouse ww)
 - Arava, Israel (fishery ww)

Support Services

Sludge Valorisation	High salinity Anaerobic Digestion Pre-treatment	
Effluents Valorisation	Desalination: electrodialysis, reverse osmosis Efficient pumping and RO energy recovery	Life-Cycle Assesment
Biomass Valorisation	Extraction & separation Animal feed Adhesives & Coatings Fillers & pastes (3D printing)	Business evaluation Stakeholder's
Algal Ponds	Algal ponds optimization Algal-bacterial treatment Process modelling Harvesting, Ultrafiltration (RO)	platform Dissemination Exploitation
Demo Sites	Camporosso Italy: WW from dairy industry – edible products, batch Ljubljana Slovenia: WW from hide warehouse (tannery) – AD, algae, RO Arava Israel: WW from fishery, spirulina & dunaliella production	

SaltGae algae to treat saline wastewater

- REcovery and REcycling of nutrients TURNing wasteWATER into added-value products for a circular economy in agriculture
- Innovative Action Horizon 2020 project
- Started in July 2017
- Demo site starting November 2018
 - Matadero del Sur, Seville, Spain

Water2REturn

- full-scale demonstration process to treat slaughterhouse wastewater
 - viable
 - cross-sectoral
 - integrated
- novel combination of biochemical and physical technologies and processes in cascade
- positive balance in energy footprint
- extraction of valuable agronomic products
 - Nitrate and phosphate concentrate (organic fertiliser)
 - hydrolysed sludge (biostimultant)
 - algal biomass (biostimulant)

How do I start an algae project, first steps

- What you have
 - water, space, nutrients, heat
- What you want
 - pains, challenges, products, market
- Are you an **early adopter**?
- Do basic balances, do it twice and repeat it
- Learn from mistakes of others
- Do not reinvent the wheel
- Be flexible & adapt

Your Project

AQUAFARM

38

gal technology centre

A project plan

This has started as an AlgaeBioGas project

Thank you for your attention

Questions?

Welcome to visit the

