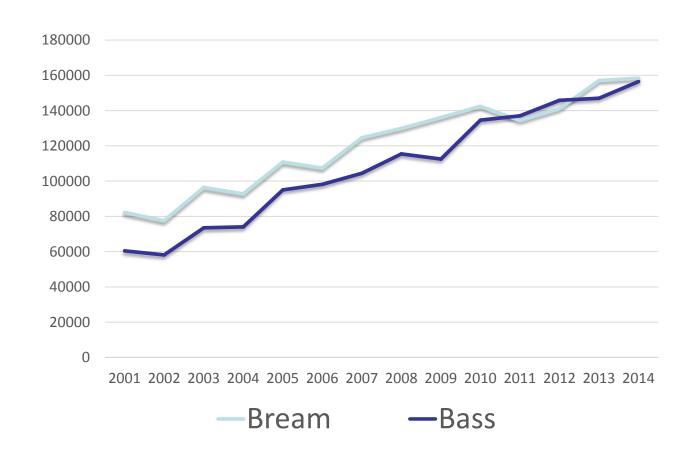


# The Mediterranean diet for seabass and seabream: a fair balance between animal and vegetable ingredients for the growth and welfare of farmed fish


Prof. Alessio Bonaldo Dipartimento di Scienze Mediche Veterinarie Università di Bologna

Aquafarm, 26 gennaio 2017





#### Bass and Bream production (t) (Fishstat, 2016)





#### **Fishmeal**

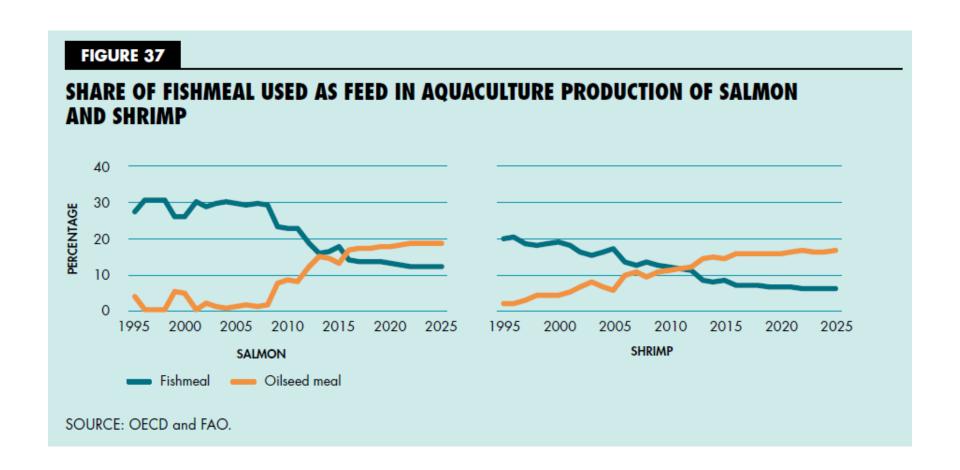





Table 16
Reduction in fishmeal inclusion in compound aquafeed of different fish species and species groups

|                                 | Fishmeal in | clusion in compour | nd aquafeed |  |
|---------------------------------|-------------|--------------------|-------------|--|
| Species/species group           | 1995        | 2008               | 2020        |  |
|                                 |             | (Percentage)       |             |  |
| Fed carp                        | 10          | 3                  | 1           |  |
| Tilapias                        | 10          | 5                  | 1           |  |
| Catfishes                       | 5           | 7                  | 2           |  |
| Milkfish                        | 15          | 5                  | 2           |  |
| Miscellaneous freshwater fishes | 55          | 30                 | 8           |  |
| Salmons                         | 45          | 25                 | 12          |  |
| Trouts                          | 40          | 25                 | 12          |  |
| Eels                            | 65          | 48                 | 30          |  |
| Marine fishes                   | 50          | 29                 | 12          |  |
| Marine shrimps                  | 28          | 20                 | 8           |  |
| Freshwater crustaceans          | 25          | 18                 | 8           |  |

<sup>\*</sup> Projected.

Source: Adapted from Tacon, A.G.J., Hasan, M.R. and Metian, M. 2011. Demand and supply of feed ingredients for farmed fish and crustaceans: trends and prospects. FAO Fisheries and Aquaculture Technical Paper No. 564. Rome, FAO. 87 pp.



## A process in motion









#### **Aquaculture Research**

Aquaculture Research, 2008, 39, 970-978

doi: 10.1111/j.1365-2109.2008.01958.x

## Influence of dietary levels of soybean meal on the performance and gut histology of gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.)

Alessio Bonaldo<sup>1</sup>, Andries J Roem<sup>2</sup>, Paolo Fagioli<sup>1</sup>, Alessio Pecchini<sup>3</sup>, Irene Cipollini<sup>1</sup> & Pier Paolo Gatta<sup>1</sup>

Table 1 Ingredients and chemical composition of the experimental diets

|                                                   | Diet  |            |            |  |
|---------------------------------------------------|-------|------------|------------|--|
|                                                   | 0 SBM | 180<br>SBM | 300<br>SBM |  |
| Ingredient composition (g kg <sup>-1</sup> diet)* |       |            |            |  |
| Fish meal LT                                      | 562   | 450        | 371        |  |
| Wheat                                             | 194   | 116        | 68         |  |
| Corn gluten meal                                  | 50    | 50         | 50         |  |
| Wheat gluten meal                                 | 50    | 50         | 50         |  |
| Fish oil                                          | 95    | 102        | 107        |  |
| Soya oil                                          | 40    | 43         | 45         |  |
| Soybean meal (48% crude protein)                  | 0     | 180        | 300        |  |
| Vitamin and mineral premix                        | 9     | 9          | 9          |  |
| Chemical composition                              |       |            |            |  |
| Moisture                                          | 67    | 55         | 46         |  |
| Crude protein (N × 6.25)                          | 468   | 473        | 477        |  |
| Crude fat                                         | 199   | 199        | 206        |  |
| Ash                                               | 96    | 93         | 88         |  |



**Table 3** Performance of sea bream in experiment 1 and sea bass in experiment 2 (mean  $\pm$  SD, n = 2) fed with the experimental diets

|                                         | Experiment1 (sea bream) |                  |                  | Experiment 2 (sea bass) |                                   |                  |  |
|-----------------------------------------|-------------------------|------------------|------------------|-------------------------|-----------------------------------|------------------|--|
|                                         | 0 SBM                   | 180 SBM          | 300 SBM          | 0 SBM                   | 180 SBM                           | 300 SBM          |  |
| Initial weight (g)                      | 17.9 ± 0.2              | 17.9 ± 0.1       | 17.4 ± 0.3       | 18.7 ± 0.0              | 18.7 ± 0.2                        | 18.7 ± 0.4       |  |
| Final weight (g)                        | $95.0\pm0.2$            | $96.0\pm1.1$     | $92.2 \pm 1.8$   | $90.1 \pm 2.4$          | $90.4\pm0.5$                      | $91.5\pm1.2$     |  |
| Weight gain (g)<br>SGRday <sup>-1</sup> | 77.0 ± 0.4              | 78.1 ± 1.0       | $74.8\pm1.5$     | $71.4\pm2.4$            | $71.7\pm0.3$                      | $72.8\pm0.8$     |  |
| Period I*                               | $2.50 \pm 0.01$         | $2.51 \pm 0.00$  | $2.46\pm0.03$    | $2.39 \pm 0.02$         | $2.45\pm0.00$                     | $2.43 \pm 0.06$  |  |
| Period II*                              | $1.75 \pm 0.04$         | $1.77 \pm 0.01$  | $1.78\pm0.00$    | $1.34\pm0.05$           | $1.28\pm0.07$                     | $1.32 \pm 0.01$  |  |
| FI                                      |                         |                  |                  |                         |                                   |                  |  |
| Period I*                               | $2.64\pm0.01$           | $2.63\pm0.05$    | $2.57\pm0.04$    | $2.38\pm0.07$           | $2.43\pm0.03$                     | $2.40 \pm 0.05$  |  |
| Period II*                              | $1.88\pm0.03$           | $1.90\pm0.03$    | $1.89\pm0.03$    | $1.47\pm0.04$           | $1.45\pm0.02$                     | $1.53 \pm 0.04$  |  |
| FCR                                     |                         |                  |                  |                         |                                   |                  |  |
| Period I*                               | $1.13\pm0.00$           | $1.12\pm0.01$    | $1.11\pm0.01$    | $1.07\pm0.02$           | $1.05\pm0.01$                     | $1.05\pm0.01$    |  |
| Period II*                              | $1.13\pm0.01$           | $1.12\pm0.00$    | $1.12\pm0.02$    | $1.15\pm0.07$           | $\textbf{1.15} \pm \textbf{0.01}$ | $1.20 \pm 0.03$  |  |
| PER                                     | $1.90\pm0.02$           | $1.88\pm0.03$    | $1.88\pm0.04$    | $1.93\pm0.10$           | $1.91\pm0.01$                     | $1.85 \pm 0.06$  |  |
| GPE                                     | $32.41 \pm 0.28$        | $31.02 \pm 0.45$ | $33.21 \pm 1.00$ | $29.68 \pm 1.84$        | $30.38 \pm 0.52$                  | $28.57 \pm 0.34$ |  |






Figure 1 Histological appearance of the distal intestine of sea bream fed diet 0 SBM and considered "normal": the villous mucosa (V) appeared normal with intact brush borders; no histological abnormalities were identified in the submucosa (SM) and lamina propria (LP) (haematoxylin and eosin). Magnification: × 100.



## Growth and feed utilization of gilthead sea bream (Sparus aurata, L.) fed to satiation and restrictively at increasing dietary energy levels

Alessio Bonaldo · Gloria Isani · Ramon Fontanillas · Luca Parma · Ester Grilli · Pier Paolo Gatta

Table 2 Growth performance and feed utilization indices of gilthead sea bream fed the experimental diets for 81 days

| Treatments                             | Satiation group          |                       |                         | 80% satiation group    |                        |                        | Two-way ANOVA P values |       |       |
|----------------------------------------|--------------------------|-----------------------|-------------------------|------------------------|------------------------|------------------------|------------------------|-------|-------|
| DI                                     | D16                      | D24                   | D32                     | D16                    | D24                    | D32                    | D                      | F     | DxF   |
| IBW <sup>1</sup> (g/fish)              | $72.5 \pm 2.3$           | $73.6 \pm 2.1$        | 73.3 ± 1.7              | $72.8 \pm 0.7$         | $74.0 \pm 1.2$         | $74.0 \pm 3.0$         | 0.580                  | 0.777 | 1.000 |
| FBW2 (g/fish)                          | $252.3 \pm 11.2^{\circ}$ | $238.8 \pm 5.3^{abc}$ | $245.4 \pm 9.5^{bc}$    | $218.0 \pm 3.5^{a}$    | $225.4 \pm 1.8^{ab}$   | $229.3 \pm 3.7^{abc}$  | 0.471                  | ***   | 0.092 |
| DGI <sup>3</sup> (%/day)               | $2.65 \pm 0.06^{\circ}$  | $2.49 \pm 0.03^{bc}$  | $2.55 \pm 0.09^{\circ}$ | $2.27 \pm 0.06^{a}$    | $2.33 \pm 0.01^{ab}$   | $2.34 \pm 0.02^{ab}$   | 0.410                  | ***   | **    |
| FI4 (%/day)                            | $1.81 \pm 0.05^{bc}$     | $1.75 \pm 0.02^{b}$   | $1.90 \pm 0.05^{\circ}$ | $1.42 \pm 0.02^{a}$    | $1.41 \pm 0.01^{a}$    | $1.39 \pm 0.01^{a}$    | *                      | ***   | **    |
| FCR <sup>5</sup>                       | $1.33 \pm 0.04^{b}$      | $1.35 \pm 0.00^{bc}$  | $1.44 \pm 0.05^{\circ}$ | $1.17 \pm 0.05^{a}$    | $1.13 \pm 0.02^{a}$    | $1.13 \pm 0.01^{a}$    | 0.102                  | ***   | **    |
| Protein intake <sup>6</sup> (g/kg/day) | $6.47 \pm 0.18^{b}$      | $6.38 \pm 0.02^{b}$   | $6.75 \pm 0.24^{b}$     | $5.41 \pm 0.12^{a}$    | $5.26 \pm 0.05^{a}$    | $5.12 \pm 0.07^{a}$    | 0.405                  | ***   | 0.029 |
| Energy intake <sup>6</sup> (kJ/kg/day) | $274.4 \pm 7.6^{\circ}$  | $297.6 \pm 0.9^{d}$   | $343.7 \pm 12.1^{e}$    | $229.8 \pm 5.2^{a}$    | $245.5 \pm 2.5^{ab}$   | $260.5 \pm 3.5^{bc}$   | ***                    | ***   | **    |
| PER <sup>7</sup>                       | $1.59 \pm 0.05^{a}$      | $1.58 \pm 0.00^{a}$   | $1.51 \pm 0.06^{a}$     | $1.82 \pm 0.06^{b}$    | $1.89 \pm 0.02^{b}$    | $1.95 \pm 0.04^{b}$    | 0.605                  | ***   | **    |
| GPE <sup>8</sup>                       | $28.3 \pm 1.3^{ab}$      | $27.4 \pm 0.9^{a}$    | $25.5 \pm 1.8^{a}$      | $32.0 \pm 2.2^{bc}$    | $33.0 \pm 0.4^{\circ}$ | $33.4 \pm 0.7^{\circ}$ | 0.636                  | ***   | 0.124 |
| GLE <sup>9</sup>                       | $84.0 \pm 3.9^{\circ}$   | $62.8 \pm 4.1^{b}$    | $46.4 \pm 4.5^a$        | $93.7 \pm 8.0^{\circ}$ | $77.6 \pm 1.9^{bc}$    | $60.7 \pm 8.3^{ab}$    | ***                    | *     | 0.714 |
| ECR <sup>10</sup> (€/kg)               | $1.34\pm0.04^{b}$        | $1.61\pm0.00^{c}$     | $1.99\pm0.08^{\rm d}$   | $1.17\pm0.04^a$        | $1.35\pm0.02^{b}$      | $1.55\pm0.01^{\rm c}$  | ***                    | ***   | **    |

Values are as mean  $\pm$  standard deviation. \*, \*\* and \*\*\* indicate when P levels are  $\le 0.05$ , 0.01 and 0.001, respectively, for diet composition (D), feeding regime (F) and the interaction of both (D  $\times$  F). Values with different superscript letters in the same column are significantly different (P  $\le 0.05$ ) according to Tukey's multiple comparison test



2

- 3 Effects of feeding low fishmeal diets with increasing soybean meal levels on growth,
- 4 gut histology and plasma biochemistry of European sea bass (Dicentrarchus labrax
- 5 L.)

6

- 7 E. Bonvini,\*,1 L. Parma,\* L. Mandrioli,\* R. Sirri,\* F. Dondi,\* C. Bianco,\* R.
- 8 Fontanillas,† P.P. Gatta,\* and A. Bonaldo\*

(Under review)



|                                   | CD             | 0SBM  | 10SBM | 20SBM | 30SBM |
|-----------------------------------|----------------|-------|-------|-------|-------|
| Ingredient, % of the diet         |                |       |       |       |       |
| FM North-Atlantic                 | 35.00          | 20.00 | 20.00 | 20.00 | 20.00 |
| Hi-pro SMB                        | 0.00           | 0.00  | 10.00 | 20.00 | 30.00 |
| Wheat                             | 21.43          | 19.31 | 15.13 | 10.94 | 6.75  |
| Corn gluten                       | 12.00          | 18.00 | 16.00 | 14.00 | 12.00 |
| Wheat gluten                      | 12.05          | 18.07 | 15.98 | 13.89 | 11.80 |
| Sunflower meal                    | 4.00           | 8.00  | 6.00  | 4.00  | 2.00  |
| Fish oil North-Atlantic           | 15.02          | 16.12 | 16.40 | 16.67 | 16.95 |
| <u>Vit/Min premix<sup>2</sup></u> | 0.50           | 0.50  | 0.50  | 0.50  | 0.50  |
| Proximate composition, % di       | y weight basi. | 5     |       |       |       |
| Protein                           | 45.41          | 46.10 | 47.00 | 46.63 | 46.57 |
| Lipid                             | 19.56          | 19.13 | 19.19 | 19.83 | 20.17 |
| Ash                               | 5.64           | 4.42  | 4.72  | 5.00  | 5.31  |
| Moisture                          | 6.26           | 6.61  | 6.66  | 6.30  | 7.22  |
| Energy (cal/g)                    | 5259           | 5355  | 5223  | 5268  | 5244  |
|                                   |                |       |       |       |       |

<sup>&</sup>lt;sup>1</sup>Diets are abbreviated as: FM, fishmeal; SBM, soybean meal; CD, control diet; 0SBM, 0 g kg-1 SBM diet; 10SBM, 100 g kg-1 SBM diet; 20SBM, 200 g kg-1 SBM diet; 30SBM, 300 g kg-1 SBM diet.

<sup>2</sup> Vitamin and mineral premix; Skretting, Stavanger, Norway (fulfilling recommendations for marine fish species given by

NRC, 2011).









#### Effects of Dietary Fiber on Growth, Gut Histology and Gut Evacuation of European Sea Bass (Dicentrarchus labrax L.)

Erika Bonvini<sup>1</sup>, Luca Parma<sup>1</sup>, Luciana Mandrioli<sup>1</sup>, Rubina Sirri<sup>1</sup>, Cinzia Viroli<sup>2</sup>, Ramon Fontanillas<sup>3</sup>, Pier Paolo Gatta<sup>1</sup>, Alessio Bonaldo<sup>1</sup>

<sup>1</sup>Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy

ALMA MATER STUDIORUM " UNIVERSITÀ DI BOLOGNA

<sup>&</sup>lt;sup>2</sup>Department of Statistical Sciences "Paolo Fortunati", University of Bologna, Bologna, Italy

<sup>3</sup>Skretting Aquaculture Research Centre, Stavanger, Norway



## **Experimental diets**

|                        | F1.5 | <b>F3</b> | <b>F4.5</b> | <b>F6</b> | F7.5 |
|------------------------|------|-----------|-------------|-----------|------|
| <b>Sunflower Hulls</b> | 0.0  | 1.5       | 3.2         | 4.8       | 6.4  |
| Soyabean Hulls         | 0.0  | 2.0       | 4.2         | 6.4       | 8.6  |
| Fish meal              | 20.0 | 20.0      | 20.0        | 20.0      | 20.0 |
| SBM concentrate        | 13.0 | 13.0      | 13.0        | 13.0      | 13.0 |
| Corn gluten            | 8.0  | 8.0       | 8.0         | 8.0       | 8.0  |
| Wheat                  | 28.4 | 23.3      | 17.9        | 12.4      | 6.9  |
| Wheat gluten           | 15.2 | 15.6      | 16.1        | 16.6      | 17.0 |
| Fish oil               | 7.5  | 8.0       | 8.6         | 9.2       | 9.8  |
| Rapeseed oil           | 7.5  | 8.0       | 8.6         | 9.2       | 9.8  |
| Vit/Min premix         | 0.50 | 0.50      | 0.50        | 0.50      | 0.50 |





## Tools





#### Gut health/microbiota

- In the year 2001, 3 bilion dollars has been used for human genome sequencing, however presently the cost of the sequence of a human genome is approximately 1.000 dollars (Banerjee & Ray, 2016)
- Next-Generation Sequencing (NGS): only for a few species, this technique was applied to explore the impact of diet on the gut microbiota (Desai et al., 2012; Semova et al., 2012; Geraylou et al., 2013; Estruch et al., 2015)



Animal Feed Science and Technology 222 (2016) 204-216



Contents lists available at ScienceDirect

#### Animal Feed Science and Technology

journal homepage: www.elsevier.com/locate/anifeedsci



http://www.elsevier.com/locate/anifeedsci

Next-generation sequencing characterization of the gut bacterial community of gilthead sea bream (*Sparus aurata*, L.) fed low fishmeal based diets with increasing soybean meal levels



Luca Parma<sup>a,\*</sup>, Marco Candela<sup>b</sup>, Matteo Soverini<sup>b</sup>, Silvia Turroni<sup>b</sup>, Clarissa Consolandi<sup>c</sup>, Patrizia Brigidi<sup>b</sup>, Luciana Mandrioli<sup>a</sup>, Rubina Sirri<sup>a</sup>, Ramon Fontanillas<sup>d</sup>, Pier Paolo Gatta<sup>a</sup>, Alessio Bonaldo<sup>a</sup>



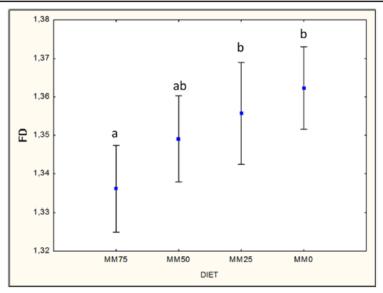



Figure 3 Diet effect on intestinal fractal dimension. Pooled data of fractal dimension (respectively, MM0 = 8 anterior + 7 intermediate + 8 posterior intestinal tracts = 23; MM25 = 4 anterior + 5 intermediate + 6 posterior intestinal tracts = 15; MM 50 = 6 anterior + 8 intermediate + 7 posterior intestinal tracts = 21 and MM75 = 6 anterior + 8 intermediate + 7 posterior intestinal = 21) for each diet displayed an increase of FD with the reduction of mussel meal (MM) diet content (Anova Post hoc Fisher LSD test n = 80; mean  $\pm 1.96*SE$ , significance p < 0.05) (letters mark significant differences in pairwise comparison).

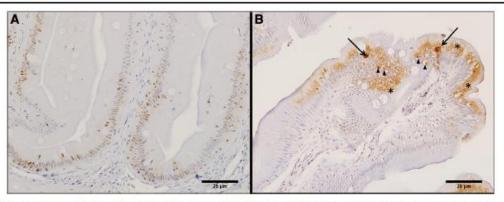


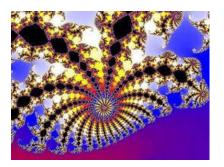

Figure 1 Immunohistochemistry with anti-PCNA antibody and TUNEL assay. (A) PCNA-positive nuclei of enterocytes are located mainly in the basal area and along the intestinal folds. (B) TUNEL-positive apoptotic cells (arrows) and apoptotic bodies (arrow heads) are located at the apex of intestinal folds. The intrinsic nonspecific binding is also evident (asterisks) (Bars = 25 µm).



## Fractal dimension analyses

Sirri et al. BMC Veterinary Research 2014, 10:148 http://www.biomedcentral.com/1746-6148/10/148

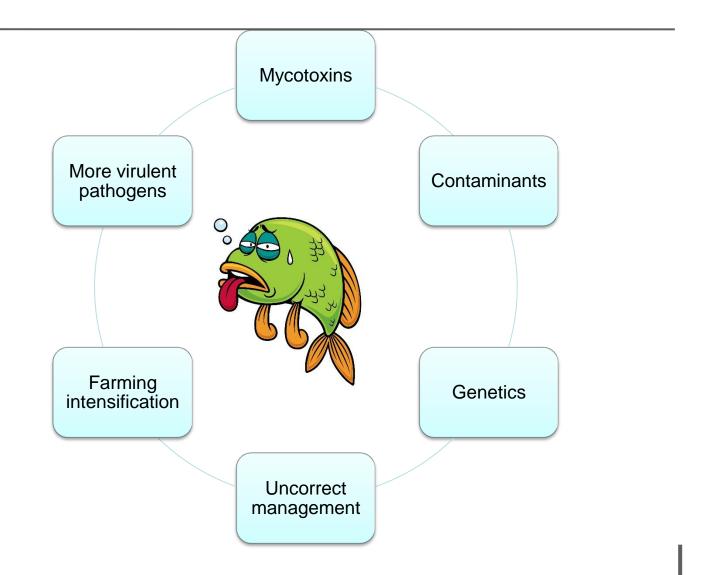



#### **RESEARCH ARTICLE**

**Open Access** 

Proliferation, apoptosis, and fractal dimension analysis for the quantification of intestinal trophism in sole (*Solea solea*) fed mussel meal diets

Rubina Sirri<sup>1\*</sup>, Carlo Bianco<sup>1</sup>, Gionata De Vico<sup>2</sup>, Francesca Carella<sup>2</sup>, Alessio Bonaldo<sup>1</sup>, Giuseppe Sarli<sup>1</sup>, Giada Tondini<sup>1</sup> and Luciana Mandrioli<sup>1</sup>










#### Are the today's fish weaker than in the past?





### Diets and new formulations

New challenges to insert alternative ingredients

Tool to transmit beneficial molecules



## Nutraceutical



Diets may contribute to increased stress tolerance and disease resistance of animals by inclusion of certain feedstuffs or functional constituents

other than essential nutrients (Nakano 2007).



## Organic acids

The use of organic acids, their salts or their combination in livestock feeds has received much attention during the past few years but the information about their effects on aquatic animal is still scarce (Lim et al., 2015).



#### **Immunostimulants**

## An immunostimulant is a natural or chemical substance that stimulates the immune system

Fish & Shellfish Immunology 56 (2016) 34-69



Contents lists available at ScienceDirect

#### Fish & Shellfish Immunology

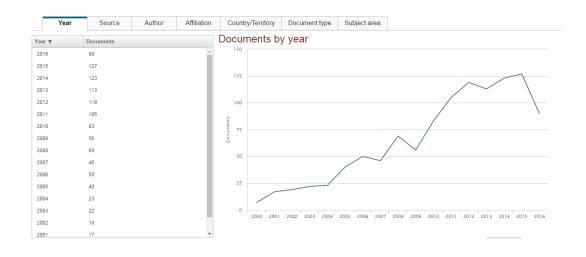


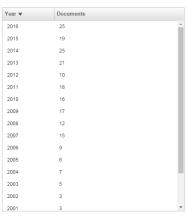


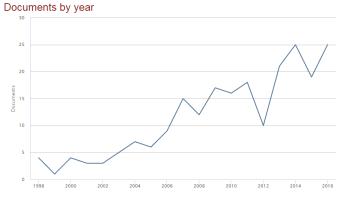
#### The response of fish to immunostimulant diets

Eva Vallejos-Vidal <sup>a, 1</sup>, Felipe Reyes-López <sup>b, 1</sup>, Mariana Teles <sup>b</sup>, Simon MacKenzie <sup>c, \*</sup>




b Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain





<sup>&</sup>lt;sup>c</sup> Institute of Aquaculture, University of Stirling, FK9 4LA Stirling, UK



## **Probiotics**









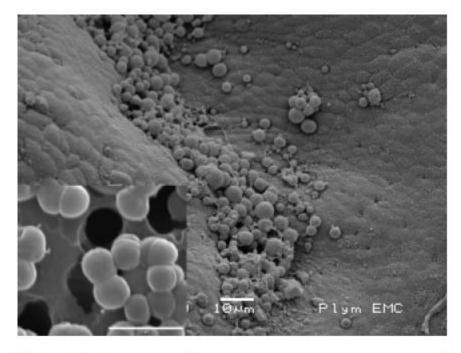



Figure 1 Scanning electron microscopy micrograph of the distal region of rainbow trout intestinal mucosa showing a localized colonization of *Pediococcus acidilactici*-like cells; scale bar =  $10 \, \mu m$ . Inset: *P. acidilactici* on  $1 \, \mu m$  nucleopore filter; scale bar =  $2 \, \mu m$ .

Merrifield et al., 2012



#### **Prebiotics**

#### Aquaculture Nutrition



Aquaculture Nutrition 2016 22; 219–282

doi: 10.1111/anu.12346

Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story?

E. RINGØ<sup>1</sup>, Z. ZHOU<sup>2</sup>, J.L.G. VECINO<sup>3</sup>, S. WADSWORTH<sup>3</sup>, J. ROMERO<sup>4</sup>, Å. KROGDAHL<sup>5</sup>, R.E. OLSEN<sup>6</sup>, A. DIMITROGLOU<sup>7</sup>, A. FOEY<sup>8</sup>, S. DAVIES<sup>8</sup>, M. OWEN<sup>9</sup>, H.L. LAUZON<sup>10</sup>, L.L. MARTINSEN<sup>1,†</sup>, P. DE SCHRYVER<sup>11</sup>, P. BOSSIER<sup>11</sup>, S. SPERSTAD<sup>1</sup> & D.L. MERRIFIELD<sup>8</sup>





- Mediterranean Aquaculture Integrated Development (MedAID)
- TOPIC: Improving the technical performance of the Mediterranean aquaculture Specific Challenge (SFS-23-2016)
- Budget: 7M €



## The consortium

| Research institutions<br>and Universities | 23 | 13 Mediterranean, 10 North European R&D groups specialized in: fish production (nutrition and feeding, genetics), welfare and health (incl. representatives from OIE European and Mediterranean fish diseases reference laboratories), food technology and marketing, economics and business, policy and sociology, environmental impacts of aquaculture |
|-------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Private companies                         | 9  | Fish farmers, feed producers, health consultants                                                                                                                                                                                                                                                                                                         |
| International organizations               | 2  | FAO (CGPM and Globefish), CIHEAM<br>Governance, research and markets, scientific cooperation, training and dissemination                                                                                                                                                                                                                                 |
| Partner countries                         | 12 | Croatia, Denmark, Egypt, France, Greece, Italy, Netherlands, Norway, Portugal, Spain,<br>Tunisia and Turkey                                                                                                                                                                                                                                              |
| Stakeholder Advisory<br>Committee         |    | Integrated by fish farmers, industry, producers associations, retailers, caterers, consumer organizations, and by policy makers                                                                                                                                                                                                                          |



#### WP2 Improving Zootechnical Performance

#### **Objectives**

- 1 Address the problem of fat deposition from a multidisciplinary approach.
- 2 Improve seed juvenile quality for on-growing purposes by means of epigenetics.
- 3 Determine optimal conditions for juveniles to apply protocols for improving their performance.
- 4 Reduce FCR, improve health and stress tolerance by better rearing and feeding strategies for juveniles.
- 5 Improve welfare by minimising stressful events through nutritional modulation and immune-stimulation



#### Conclusions

- The formulation of the diets for bass and bream has significantly changed through the progressive inclusion of plant ingredients in the formulation
- This process has supported the Mediterranean aquaculture development according to sustainability criteria
- Gut health, specifically microbiota, istomorphology studies and immune system is at the moment one of the most important issues to be used to improve diets
- Many additives categories are now available to improve the efficacy of feeding in ensuring the productions in aquaculture and fish welfare
- In the upcoming European project MEDAID, new dietary strategies and new additives will be evaluated to solve specific critical issues in terms of welfare and quality of bass and bream



#### Thanks for the attention!

Alessio Bonaldo

Alessio.bonaldo@unibo.it

Skype: abonaldo

335 8395218



